
:..
~

J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design '96, 603-622.
«:>1996 Kluwer Academic Publishers. Printed in the Netherlands.

GENERATING CONCEPTUAL SOLUTIONS ON FUNCSION:

EVOLUTION OF A FUNCTIONAL SYNTHESISER

AMARESH CHAKRABARTI AND MING XI TANG

Engineering Design Centre, Department of Engineering
University of Cambridge
Trumpington Street, Cambridge CBl lPZ, UK

Abstract. FuncSION is a software that can synthesise, using a database of functional
elements, an exhaustive set of solution concepts to satisfy functional requirements of a
design problem. It is intended to stimulate designers' thinking by providing a framework
where these solutions are offered to the designers for exploration in the conceptual
design stage. Reported in this paper are some of the testing results using FuncSION in
two case studies and three hands on experiments, in terms of its ability to (i) offer a
wide range of new, interesting and useful ideas, and (ii) facilitate exploration of these
ideas in an effective way. The main results are: it does provide useful ideas and
interesting insights to the designers, but does this at the cost of having to deal with a
potentially huge list of candidate solutions which are hard to explore sufficiently. Based
on these results, a scheme for coping with a large number of solutions without losing
explorability is proposed, whereby designs could be generated and explored at multiple
levels of abstraction, using pre-defined as well as custornised clustering strategies at any
of these levels. An implementation of the scheme, in terms of a user editable
hierarchical database of elements and solutions, and a general algorithm for synthesis at
multiple levels are proposed. A set of clustering strategies for identifying and grouping
the solutions considered by experienced designers to be redundant and wasteful is also
discussed, with some initial testing results.

1. Introduction

In transmission design, the major functional requirement of a design is to
transmit and transform forces and motions. This can be expressed as a
transformation from a set of input characteristics to a set of output
characteristics. Each of these characteristics may be required to change with
time. The transformation at an instant between the input and the output
characteristics is an instantaneous transformation. An ordered set of such
transformations can be used to express the overall functional requirement of
a problem. In this approach, a solution concept is an abstract description of a

-- --



;..,.

604 AMARESH CHAKRABARTI AND MING XI TANG

system, of identifiable functional elements, that can satisfy given functional
requirements. For instance, a solution concept, for transmitting a force on
the same plane but into a different direction and position, could be a system
in which an input rack takes the input force to rotate a pinion, which moves
an output rack in the required direction to provide the required output force.

The instantaneous transformation of a given system can be deduced
using the information about its constituent elements, connections, and their
rules of combination. FuncSION (acronym for Functional Synthesiser for
Input Output Networks) is a system developed at the EDC in Cambridge
University that synthesises solution concepts, using functional elements from
a database as illustrated in Figure 1, to fulfil a given functional requirement
of a design in terms of its required instantaneous transformation, so that
designs so synthesised fulfils the required function at one instant of time.

In the representation that FuncSION uses, a design problem is defined as
a transformation between a set of instantaneous input (and output vectors,
each of which has a set of characteristics such as kind (the type of I/O, such
as force, rotation etc.), orientation (the spatial axis along which an I/O is
oriented) sense (the sense of the I/O along the spatial axis) a position (spatial
co-ordinates) and magnitude, to represent the required I/O characteristics.
FuncSION allows the user-definition of a database of functional elements,
where each element is expressed as a transformer which transforms an input
vector of given characteristics into an output vector of specified
characteristics (for example, a screw element can transform an input vector
of the rotation kind into an output vector of the translation kind so that they
are co-axial to each other).

In FuncSION, the synthesis of a solution concept is supported in a three
step process. The first step involves Kind Synthesis, where an exhaustive
search algorithm is used to synthesise a set of topological networks of
causally connected functional elements, each of which is structurally feasible
and can transform the give input kind into the output kind required of a
design problem. Concepts generated by this procedure is exhaustive, i.e., all
possible combinations of elements, from a given database of elements and
using a specified maximum number of the transformations allowed in any
solution concept, which fulfils the given functional requirement, are
generated. In the second and third steps, possible alternative spatial
configurations (Le., spatial layouts) of each such topological candidate
solution concept can be generated, using two further procedures called
orientation and sense synthesis, so that the concepts can also satisfy the
orientation and sense constraints imposed by the design problem. The
representations for the design problem, design solution concepts and
synthesis procedures used in FuncSION are reported in Chakrabarti and
Bligh (1994).



:..

EVOLUTION OF A FUNCTIONAL SYNTHESISER

I Tie-rod 1 0
~O O~

Axial transmission of
translation

I Screw
0

0
e-..

Axial rotation to translation
transfonnation

Tie-rod 2

Ii to
Transverse transmission
of translation

I
0 Wedge

0
0

,
Intersecting transmission
of translation

0 YO Point I Input 0 Output

605

I
0

Shaft 0..0
Axial transmission of rotation

""" Lever I-dr lever type R/'

0

: : ;q:~ry~T
Translation to rotation in a skew way

I ~

Carn
0

O~

Intersecting rotation
to translation

~ Rotatio~ Translation

Figure 1. The elements used by FuncSION in the synthesis of conceptual solutions.

The objective of this paper is to present the development of FuncSION based
on its application in real design cases and its evaluation by experienced
designers. In Section 2 the results of testing FuncSION are discussed. From
these tests, the main research problems to be tackled before utilising the
potential of FuncSION are identified in Section 3 and Section 4. A scheme
for solving these problems and its implementation is presented in Section 5,
with some of initial test results.



:.,.

606 AMARESH CHAKRABARTI AND MING XI TANG

2. Testing

2.1. MAS PROJECT CASE STUDIES

The Mobile Arm Support (MAS) project was intended to design a means for
enhancing the mobility of Muscular Dystrophy (MD) sufferers. People
having this disorder have little or no lifting strength in their arms, although
they do not lose any of the finer controls of their fingers. In the task
clarification phase of the project, it was found that the MD sufferers are
capable of using their inertia to move their arms in horizontal plane in
absence of significant surface resistance. It was decided that an arm support
would be designed as a means of enhancing mobility, which would be able
to provide powered vertical motion of the arm. There should be enough
freedom in the horizontal direction for the users to use their own strength to
move their arms in the horizontal plane. ...lle project ran in two phases
spanning a total of over three years, which led to the development of two
prototypes.

2.1.1. Comparison with Designs generated in MAS 1 Project
The two designers who worked in MAS I project were assisted by a
brainstorming session, which gave them an initial pool of ideas. They
explored these ideas, and eventually came up with three variants, one of
which was selected for embodiment.

As a retrospective study, an input-output requirement, which describes
the intended instantaneous function of the arm support, was given
independently to FuncSION, for it to generate ideas and their spatial
configurations. As vertical mobility was the main requirement, the input was
either a translation or a rotation, which could be in any of the three reference
directions, and the output was specified as a vertical translation. With the two
specifications given to it (one is a torque to force transformation, and the
other, a force to force transformation) a total of 162 ideas were generated.
These ideas were compared with those that designers generated.

There were a total of 73 ideas generated by the designers. Most of these
ideas are either physical effect-like solutions, or incomplete and
incomprehensible, or from a different domain of knowledge, and thus are
not within the realm of FuncSION, leaving a total of 27, not necessarily
distinct ideas which could be compared with the solutions FuncSION
generated. FuncSION managed to generate 22 of these,

Of the 162 solutions that FuncSION suggested, 13 (the number of
distinct ideas of the 22) were generated by the designers. However, given that
FuncSION allows the same element to be used more than once in a solution,
it often generates a number of solutions which might be considered as
variants of other ideas (possibly giving an inflated impression of its



:..
~

EVOLUTION OF A FUNCTIONAL SYNTHESISER 607

originality). Also, some solutions generated might be too expensive to be
considered by the designers at all. One method to compare designers'
solutions with solutions generated by FuncSION, in the above context, might
be to group designs generated by FuncSION into a number of clusters and
to eliminate those clusters which contain "expensive" solutions. If an idea
exists in the designers' documents which can be abstracted as one of the
solutions in a cluster from FuncSION, then to assume that this cluster has
been considered by the designers. There are two problems with this method.
One is the issues of what criteria should be used to group designs as similar,
and to classify designs as wasteful! expensive. The second is that the designs
generated by the designers are often at a different level of abstraction than
those generated by FuncSION. If these solutions are at a higher level of
abstraction, these cannot be discussed within the realm of FuncSION (e.g.,
those ideas that are physical-effect-like). If these are at a lower level of
abstraction, we need to abstract them to the right level before these can be
compared with solutions generated by FuncSION; this has two consequent
difficulties.

Take the instance of the "shaft rack and pinion" solution (Bauert, 1993)
as an example, this could be interpreted as a "shaft lever tie rod" solution
before it is compared with FuncSION (because a pinion and a rack could be
abstracted as a lever and an axial tie-rod respectively).The difficulties are
that if we interpret, by having spotted an instance of the "shaft rack and
pinion" design, that the designers have considered the whole cluster that
represents "shaft levers tie rod", then we might have made two layers of
mis-conception: whether or not the designers considered "shaft lever tie
rod" solution class as a whole (various possible embodiments of this class at
the level of abstraction at which the designers considered their design);
whether or not they considered the whole cluster of "shaft lever tie rod"
type solutions (the variants of this solution at the same level of abstraction
such as "lever tie rod", "shaft lever" etc.).

We have tried to deal with the first problem, of finding criteria for
clustering designs, by carrying out a set of further experiments with
experienced designers, and identifying their common notions of
wasteful/expensive and similar as clustering heuristics. The second problem,
about comparison of designers' idea-instances with FuncSION's solution
clusters, was dealt with by this assumption that if designers' instances can be
abstracted into more than one solution in a cluster, then they must have
considered the solution types represented by that whole cluster. However, if
there is just one single or no idea-instance that could be abstracted as a
solution in a cluster from FuncSION, then the designers did not consider this
solution cluster.

There were interesting and inexpensive solutions that were suggested by
the computer, which designers did not conceive (one example of which is a



'"
;

608 AMARESH CHAKRABARTI AND MING XI TANG

single link lever connecting an input rotation to a tie-rod via a four bar
linkage to provide an output hand motion). It was interesting to note that
some solutions which were regarded by the designers as distinct solutions
were regarded by the computer as topologically the same (e.g., the final two
solutions in MAS I, see Figure 2). This signifies the importance of
considering spatial configurations as distinct solutions.

a Lever 1 tTie-rod 2t
Lever 2

Tie-rod 1 t Lever:a Lever 1t Tie-rod 2t

Screw Tie-rod 1

a. MAS I Final Solution ,
,

Screw

~ b. MASI pre-finalsolution

Figure 2. The [mal solutions in MAS I project.

2.1.2. Comparisons with Designs Generated in MAS II Project
In phase two of MAS project, designers were given the designs generated by
FuncSION in Phase I, along with the other existing ones, for consideration.
They went through these as an exercise, hardly taking note of them as
serious solutions, and got on with designing as they otherwise would (and
again did not come up with those feasible designs as in phase I). Possible
reasons might have been that (i) right from the beginning this was taken as a
redesign exercise, with the intention of modifying the previous designs to
alleviate the existing problems; (ii) concepts generated by FuncSION were
not easy to understand due to their user-non-friendly abstract representation,
and lack of visualisation of how they worked; (iii) there were too many
solutions to browse; (iv) there were a large number of infeasible, expensive,
or similar solutions which discouraged the designers to explore further.
However, these are only guesses, and needed validating before they can be



:..
~

EVOLUTION OF A FUNCTIONAL SYNTHESISER 609

given serious consideration. We thus did some further testing for an
evaluation, which is discussed below.

2.2. HANDS ON EXPERIMENTS BY EXPERIENCED DESIGNERS

Three experienced designers were asked to use the system to evaluate the
solutions generated by the computer for aspects of their originality,
feasibility, redundancy and wastefulness, and to comment on whether and
how they would modify the ideas they find unacceptable to make them
acceptable. They were also asked to make comments on the ease of use of
the package, and to make any other observations or suggestions.

2.2.1. Experience of Designer A
Designer A went through the MAS design exercise twice using a different
database of basic elements each time. In the first experiment he used 5
elements: two lever types, two types of transitional elements, and a screw type
element. He wanted to check whether or not FuncSION produced the
solution he had in mind, which it did. He then went through the second
experiment, where he used another database of five elements. He could not
think of any sensible solution using these elements, and wanted to check
whether FuncSION could surprise him. There were three solutions which he
found useful and interesting.

However, there were a large number of solutions which he thought were
redundant (with repetitive transitional elements, e.g., three shafts in series as a
distinct solution to two shafts) or wasteful (e.g., having two cams in a single
I/O design). For instance, of the 20 solutions in this second experiment, there
were 4 redundant and 3 wasteful designs, which totalled 33% of the total
number of solutions.

He found that he could not cope with more than 20 solutions at a time,
and suggested that browsing the solutions using user-defined categories
(such as all solutions with a screw, or all solutions with lever only) would
make handling large number of solutions easier. The solutions were difficult
to visualise or interpret as we expected, and he thought having iconic
representations coupled with simulation facilities would make visualisation
eaSIer.

2.2.2. Experience of Designer B
Designer B went through the MAS exercise thrice, each time with a further
reduced database of elements and less number of elements to be used in a

solution concept, so as to bring down a large number of solutions to explore
(from 700 to 50 to 6). In each of these cases, he found that a solution
concept having additional tie-rods or shafts were just variations on the
original theme.



:.
~

610 AMARESH CHAKRABARTI AND MING XI TANG

In the above cases, designs with a lever preceding a screw were
considered wasteful, as long as levers were being interpreted as links and not
as temporal elements such as gears. Once this bias was removed, however,
some of the solutions having levers preceding gears were now considered
geared variations of the rest of the solution. Similarly, a solution having
three levers in series followed by a tie rod was originally considered as a
feasible but not exciting solution when the levers were interpreted as links.
But when the levers were interpreted as gears, the designer found the same
solution a clever new idea as this became a rack and pinion solution. This
means that being able to see the solution at levels of greater detail reveals
more insights as to how useful it might be. He felt that the solutions in these
exercises gave him six distinct ideas. The first one consisted of two cams,
which he felt, unlike Designer A, was not a wasteful idea, but a new idea he
did not think of. The other clusters were screws with tie-rods and levers,
levers and tie-rods, two cams connected by a lever, a cam driving two levers,
and a cam connected with tie-rods, which included both MAS I and MAS II
final solutions! Having a vertical tie rod on a screw gave him the idea of
using a sleeve to isolate the transitional component of the screw (an insight).

Regarding visualisation issues, levers were not understood as being
capable of being abstractions of gears, in the beginning. Also, a lever, as
used in FuncSION, was not a conventional see-saw type but a more
fundamental element which could be combined in various ways to produce
bell crank levers as well as see-saws. Cams, in the present representation, were
hard to visualise, and it was hard to visualise tie rods as axial links.

Regarding the procedural bits, Designer B felt that when he found an
interesting Cam based design, he wanted to explore all the Cam based
designs. So a user-defined clustering facility such as find all designs that
have a shaft in the middle would be useful. He suggested that it would be
useful to do synthesis with only output specified.

2.2.3. Experience of Designer C
Designer C went through the MAS exercise twice. In the first run, he chose
three elements from the database, and asked for solutions having at most
three elements. There were two solutions: one with two levers and the other
with two levers and a cam in between. He expected both the solutions and
there were no surprises, although both were perfectly reasonable solutions.
He then chose a 4 element-database, and solved again for the same
requirements. This time there were twenty solutions, several redundant (the
heuristic was that one or many translators in series, or at the beginning or
end), though he thought these variations might be useful for optimisation
purposes. Here also, the solutions did not surprise him. This is not surprising
because the database chosen was very limited and there was not much scope



:~.;

EVOLUTION OF A FUNCTIONAL SYNTHESISER 611

for innovation. He felt that visualisation would be improved if the symbols
were more self-explanatory, and if two solutions could be seen alongside one
another.

3. Observations and Discussion

Designers in the above experiments found that FuncSION in general
generates a range of interesting solutions, and often comes up with
surprisingly clever ideas and insight. However, it also generates a large
number of redundant and expensive solutions, and this makes it difficult or
frustrating to evaluate and explore the ideas to any depth. They had some
difficulty in visualising the designs at the present representation, and could
visualise only when these designs were shown at a lower level of abstraction.

On the whole the above experiments suggested a common pattern of
when solutions were considered similar: if two solutions are different only by
a transitional element (e.g., a tie rod, or a shaft), then they are similar. The
consideration for wastefulness was not as straightforward, however.

If this criterion of what redundant solutions mean were applied to cluster
the designs FuncSION suggested in the MAS I and II cases described before,
and the wasteful designs it suggested were clustered using the wastefulness
criterion, the rest of its designs could fall into 12 different clusters of
solutions of an average size of about 12. Of these, only 4 clusters were
considered at any length at all by the designers in MAS I and MAS II, while
just a single low-level instance was found for 2 of the 8 other clusters. This
indicated the potential of FuncSION for suggesting different ideas and idea
types. It is important to note that the above clusters were the result of solving
the MAS problem using a database of 5 elements only. If this database were
increased to 7 for instance, the number of clusters, after eliminating the
expensive solutions would be as high as 29, of which only 6 would then have
been considered by the designers, and only 4 of these at any length!

Based on the experience gained from these case studies and experiments,
it was felt that FuncSION needed further attention in three different areas:

3.1. TOO MANY SOLUTIONS

One of the problems associated with the synthesis approach adopted by
FuncSION is that the system may generate so many solutions that it is
difficult for the designer to even browse through them. Some of these
solutions were considered by the designers to be redundant (which is a
variation another which uses additional, non-essential elements), or wasteful.
However, the exploration of 'redundant' solutions often might be useful if
the non-redundant ones cannot provide some additional functions which are
not within the realm of the main function.



"'..

612 AMARESH CHAKRABARTI AND MING XI TANG

Take the solution that was generated by FuncSION for Phase II of the
MAS project (see Figure 3) as an example. There are two consecutive tie-
rods of the same type, which might appear to be redundant unless one were
trying to provide two extra degrees of freedom for the movement of the
output point in the horizontal plane.

tie-rod 2~ tie-rod 2 ~ output

tie-rod 1

screw

input

MAS n final solution

Figure 3. Redundancy can be useful.

Take the MAS I project as another example in which the final two
solutions are considered by FuncSION to be topologically the same (Figure
2). The two solutions are only different in terms of the sense configuration.
However, for the designers, one was considered to be a substantial
modification of the another as it made the design more compact. So, whether
a design is to be considered redundant or not, depends largely on other
requirements that the design might have. Also, the exploration of redundant
solutions might be useful if these non-redundant ones can provide some
additional functions which were not originally thought of.

However, it was clear that far too many solutions were typically produced
by FuncSION for the designer to meaningfully explore. For example, take a
typical case of synthesis where only 32 topologically distinct solutions are
generated from a database of 5 elements and a single I/O function, each of
these can have at least 4 spatial configurations, each of which can have at
least 3 physical concepts, giving a total of 384 solutions. The conclusion is
that a strategy is needed to generate or present these solutions whereby they
could be browsed through without being overwhelmed by them.



;".

EVOLUTION OF A FUNCTIONAL SYNTHESISER 613

3.2. TOO DIFFICULT TO INTERPRET AND TO VISUALISE

Two main issues concerning the interpretation and the visualisation of the
synthesis results were considered vital by the designers who evaluated the
FuncSION system. The first is that the representation of elements in the
database is too abstract. For example a shaft looks similar to a screw in terms
of input/output function. The second is that the static representation for
functional elements and conceptual solutions makes it hard for the designer
to image the likely behaviour of an element or a conceptual solution, thus
contributing little towards supporting designers' creative thinking. That is,
the expected behaviour of each element or a solution needs to be visualised
in order to give the designers more information. Thus a means of visualising
solutions and their elements should be developed.

3.3. SOME DESIGNS DO NOT FUNCTION TEMPORALLY

So far, all the solutions that FuncSION generated work at one instant of time.
For instance, a lever type element represents a transformation from an
instantaneous input to an instantaneous output. This could be an abstraction
of a gear or belt type element, which can provide translation at that point for
an extended length of time, or it could be a link type lever whose position
and direction of output change with time. The conclusion is that a temporal
reasoning facility is required to evaluate the potential of each such solution
to function temporally.

4. Objectives Revisited

The central objective of FuncSION is to provide an environment which
would stimulate designers thinking by supporting them to explore a wide
range of ideas and, if they wish, variants of these ideas, so as to increase their
chances of developing new, interesting and useful designs. Two factors
contribute to developing such ideas: there must be a wide range of computer
generated ideas for them to explore, and these solutions must be explored
and evaluated sufficiently by the designers.

In order to generate a wide range of ideas, FuncSION needs a wide
variety of elements in its database, which in turn produces a large number of
solutions, many of which are similar to each other. If a means could be
developed to cluster these solutions into groups of similar solutions, and also
weed out solutions that are considered "wasteful" by the designers for a
specified requirement, then this number could be more manageable.
The evaluation on FuncSION indicated that it is easier to explore solutions if
they are not too many, and if they can be visualised easily. It is easier to
visualise a solution if it, and its component elements, can be seen at a



:'.

614 AMARESH CHAKRABARTI AND MING XI TANG

sufficient degree of detail (in terms of their behaviour as well as their spatial
relations), i.e., the less abstract it is. On the other hand, the more abstract the
database used by FuncSION is (Le., where the an element can represent a
large number of less abstract elements), the less the number of solutions
generated will be. Therefore, there is a conflict about the right level of
abstraction, see Figure 4. If it is too high, the solutions will be more difficult
to visualise, and consequently to explore, whereas, if it is too low, there will
be too many detailed solutions to explore. What further complicates this
issue is that the "right" level of abstraction varies according to the
experience of the designer. Experienced designers might only need to look
at designs at a higher level of abstraction than an inexperienced designer,
and still be able to imagine their details and evaluate them, while
inexperienced designers might need more visualisation support, Le., further
degrees of possible detail of the solutions before they could evaluate them.

+t noveltyofi~.~ range of ideas "

explorablbty ~
"

J ~ , !! no. & range of building
IT. 11 blocksin the database-

ViSU~

abstraction level

A it '-B

AJLB

means increase in A will require increase in B

means increase in A will require decrease in B

Figure 4. The factors that affect the novelty of ideas in a design.

Based on the results of evaluation, we conclude that FuncSION must be
able to offer designers a wide variety of solutions to explore; the number of
these solutions need to be small without compromising their range. support
Designers should be visualise and browse through these designs at various
degrees of detail, and should be able to see the variants a given design could
have for he evaluates them. They should be able to put their own clusters on



;..

EVOLUTION OF A FUNCTIONAL SYNTHESISER 615

the solution space, based on criteria such as what they consider, or is
generally considered wasteful, and invoke any particular cluster at their will.

5. Further Development,Implementation and Evaluation

Four strategies have been initially identified to avoid over-generalisation of
the synthesis solutions in a computer-based system. These strategies are. to use a hierarchical functional element structure,
. to provide synthesis programs which operate at different levels of

abstraction,. to use design heuristics to cluster design solutions, and. to provide alternative control strategies for visualisation and browsing.
A new version of FuncSION has been implemented using a knowledge-
based system development tool called GoldWorksIIITM on a SparcStation. It
consists of a database of functional elements and their transformation rules, a
functional synthesiser with synthesis algorithms that operate at different
levels of abstraction, and a graphical user interface for browsing through and
visualising the solution concept generated.

5.1. DATABASE

A way of eliminating unnecessary combinations of synthesis solutions is to
allow the designers to choose the types of functional elements and their
interfaces from a hierarchical structure. For instance, a lever element, at a
lower level of abstraction, can be split into link type, gear type, pulley type,
etc., while an axial tie rod can be split into axial links, chains, belts, ropes,
racks etc.

Once a solution is generated at a given level of abstraction, it should be
possible for the designers to navigate through the solution, or parts of it, at
other levels of abstraction before making any change. The functional
database should be hierarchically structured to enable the designers to edit
or modify the elements at various levels of the hierarchy.

An object-oriented product data model is used to build a database of
functional elements which can be selected to synthesise solutions based on a
user defined input/output requirement specification. Each functional element
in the database has a type which is associated with a set of rules that
determines how it responds to different orientation or sense inputs. In the
current implementation there are 72 such rules.

5.2. ALGORITHMS FOR CLUSTERING AND BROWSING SOLUTIONS

The implementation of the original version of FuncSION used specific
features of the functional elements to solve the design problems at a specific



:".
;

616 AMARESH CHAKRABARTI AND MING XI TANG

level. It is therefore unable to deal with a hierarchical structure of functional

elements and therefore is abstraction-level-specific. However, it is possible to
extend the algorithm so that it can solve multiple input/output synthesis'
problems using a set of black boxes with inputs and outputs having
attributes, the exact values of which would depend on the level of the
functional element hierarchy. The key idea is to separate data from the
synthesis procedures, and wrap them both with a common interface. In the
new version of FuncSION, a three-steps strategy is used to synthesise
solutions. The rust step generates an exhaustive set of candidate solution
concepts for a selected set of functional elements. The second step tests the
feasibility and functionality of the solution concepts to eliminate infeasible
ones. The third step clusters the feasible solution concepts based on user
selected heuristics.

For example, suppose we have three elements (1 2 3) (in this list each
number represents a functional element and the actual elements can be filled
in later). In the generate stage, all the combinations of these three elements
are generated, resulting in a list of candidate solution concept structures (1,
2, 3, (1 2), (2 1), (1 3), (3 1), (2 3), (3 2), (1 2 3), (3 2 1), (1 3 2), (3 1 2), (2
1 3), (2 3 1». In this list, (1 2), for example, means that the connection form
element 1 to element 2 forms a possible solution concept structure.

In the test stage, each candidate solution concept structure is mapped to a
chosen level of the functional element hierarchy in the database, retrieving
the real element attributes. The compatibility of functional elements within
each candidate solution concept can then be tested. This is done by
removing those which are incompatible in terms of input/output
transformation. For example, if the output of element 1 does not match the
input of element 2, then the solution concept structure (1 2) is incompatible.
All the compatible solution concepts must also be tested using the
input/output requirement specification. The results of this process form the
solutions of the kind synthesis step (Chakrabarti and Bligh, 1994).

Each kind synthesis solution can then be selected by the designers for
orientation and sense synthesis. The orientation synthesis is done by
propagating an input orientation from the input point to the output point of
a kind synthesis solution concept using the orientation transformation rules,
the result of orientation is a list of orientation synthesis solution concepts
The sense synthesis is done by propagating an input sense from the input to
the output point of an orientation synthesis solution concept. Both
orientation and sense synthesis generate multiple solution concepts because
one element typically responds to the same orientation and sense input in
more than one way and can have alternative spatial configurations.

The outcome of kind, orientation and sense synthesis may still be a large
set of solution concepts with alternative spatial configurations. The clustering



:".
;

EVOLUTION OF A FUNCTIONAL SYNTHESISER 617

heuristics discussed above can then be selected by the designers and applied
to these solutions to group solution concepts with distinct features.

A solution concept generated at one level of the functional element
hierarchy can be specialised in a number of different ways. We have so far
implemented the following:
1. any solution concept generated by the system at one level of the

functional element hierarchy can be mapped to a lower level by
substituting the elements in the solution concept with those at a lower
level. This may produce a list of combinations. For example, if a solution
(lever -> tie-rod) is mapped to a lower level, then for a hierarchy with two
possible variants of a lever (a gear and a link-liver) and a tie-rod (a rack
and a link-type-tie-rod), there will be 4 low level combinations, i.e., (gear
-> rack), (gear -> link-type-tie-rod), (link-lever -> rack) and (link-lever->
link-type-tie-rod). The lower level elements may introduce interface
constraints that would render some combinations invalid (in this example
the second and the third solutions are invalid). A program has been
designed to work out only the valid mappings.

2. a solution concept can be modified by a designer by replacing any part
of it with an element or an interface at a lower level of abstraction. This

allows the designers to specialise or further constrain a solution concept
in a depth-first manner. For example, if a solution concept contains an a
lever, then it is possible for the designer to modify this element by
looking at its sub-class or super-class elements. Any modification made
by a designer is checked by the system to ensure the consistency of the
solution.

3. solution concepts generated at a low level can be clustered into a higher
level by merging low level elements or interfaces into higher level ones.

It is necessary to integrate design heuristics into the synthesis process in
order to offer the designers a wide range of solutions and their variants in a
controlled manner. We define a variant solution in the following ways:
. Designer's preference, i.e., the solutions that a designer would consider as

the variants of another design,
. Generalised solution concepts based on experiments, i.e., what we have

found universally as variants from the hands-on experiments (this can
grow as one does more experiments with the designers), or. Variations of past design examples even though they may have been
noted by the designers as wasteful. Here a wasteful solution is the one
considered by the designers as inefficient or too expensive.

All these could form part of a library of heuristics or filters that could be
integrated with a systematic synthesis program to weed out the solutions
which may be generally regarded as being "bad ideas". This results in an
organised concept solution tree instead of a huge number of solutions at the
same level of abstraction.



!"

618 AMARESH CHAKRABARTI AND MING XI TANG

A number of heuristics have been found useful in the experiments and
can be selectively (by the designers) applied to the synthesis program to
cluster the solutions generated by the computer. These heuristics include:
fixing the number of transformations; each element is used more than once;
each element is used no more than once; each element is used at least once;
each element is used exactly once; no element is used repeatedly more than
a specified times; no ele'ment is repeatedly used consecutively; same tie-rods
are not directly connected; no translators such as shaft, tie-rod etc. are used;
fixing the input/output elements; and only input is specified while the output
is left open.

5.3. GRAPHICALUSERINTERFACE

The synthesis algorithm described in Chakrabarti and Bligh (1994) used a
breadth-first search strategy to generate general to specific synthesis
solutions. While this remains a useful control strategy in the new
development, a number of alternative control strategies must also be used for
the designers to explore the whole solution concept tree. Some of these
control strategies are:. to allow the designers to path through all the levels of the solution

concept tree;. to pick up of a few solution concepts from a user-defined level on a
random basis before generating all the possible solution concepts at that
level;. to set default values for the numbers of solution concepts to be generated
at each level of the functional element hierarchy.

A new graphical user interface is designed to allow the designers to control
the functional synthesis process with visualisation support by. ionising each functional element for an easy selection;. simulating the behaviour of individual components as well as the solution

concepts generated from individual elements;. helping the designers to browse through the solution concept tree.
Simulation is an important way of supporting the understanding of a
synthesis solution so as to help with its selection and modification. While a
3D modelling tool can be used to visualise the final solution after
embodiment design, it is only necessary at the functional synthesis stage to
use a two dimensional graphical display scheme. Within this scheme, each
functional element has an iconic image that can be actively manipulated
within a graphical window.



t..

EVOLUTION OF A FUNCTIONAL SYNTHESISER 619

R

NR

c~ lever-type T ~ lever-type R

wedge lever-typeR c~ lever-type T ~ screw

lever-type R~ lever-type T ~ earnMAS

lever-type R~ lever-type T ~ screw

screw~ lever-type T ~ lever-type R

earn

carn~ wedge

Case A

R

wedge~

lever-type T"" lever-type R ~ wedge wedge NR

lever-type T ~. c~ wedge
lever-type T ~ scre~ wedge

lever-type R earn

wedg~ wedge~ wedge

wedge~ wedge

R: idea clusters generated by the algorithm that allows repitition of elements

NR: idea clusters generated by the algorithm that does not allow repitition of elements

idea clusters that would be considered wasteful by the designers

MAS: idea clusters generated by the designers in MAS projects

Figure 5. A comparison between a Repeat and a Non-repeat algorithm.



:".
;

620 AMARESH CHAKRABARTI AND MING XI TANG

5.4. EVALUATION OF THE NEW VERSION

In order to evaluate the newly implemented system, we have produced some
test cases using some of the heuristics discussed above. Figure 5 shows how
the solution clusters, produced by a repeated (each element is used more
than once) and a non-repeated (each element is used no more than once)
algorithm in two of the test cases, relate to the ideas generated by the
designers in the MAS project.

In Case A (in the case of a rotation to translation input/output
requirement using 7 elements with a maximum of 3 allowed transformers
per solution), the repeated algorithm produced 18 clusters, 2 of which would
have been considered by the designers as wasteful, and 5 of the remaining
ones were independently generated by the designers. For the same case, the
non-repeated algorithm generated 12 solution clusters with no wasteful
clusters, but failed to produce 2 of the 5 clusters which were independently
generated by the designers.

In Case B, the number of clusters for the repeated algorithm is 13 (in the
case of a translation to translation input/output requirement using 7 elements
with a maximum of 3 allowed transformers per solution), none of which
would have been considered wasteful by the designers. The number of
clusters produced by the non-repeat algorithm in this case is 11, which
included the two that were independently touched upon by the designers.

The indication is that the non-repeated algorithm generates less number
of variants or redundant solutions and thus less number of wasteful solutions,
but at the cost of omitting some of the solution clusters which would still be
regarded useful and important by the designers. This simply pontificates the
point that it is a heuristic and not a general principle. It should therefore
only be used in situations where the designers are given a prior warning
about its possible consequences.

6. Related Work, Conclusionsand Further Work

There are three main areas which relate to this piece of work. One is
computational synthesis approaches and approaches that they take to cope
with complexity, one is design methodology and how generation aspects
could be supported, and the third is the systems and user interface issues.

There have been evidences in design theory and methodology that it is
important to generate a range of designs and explore them sufficiently
before homing in on specific designs for further development. In fact in
some of the protocol studies done in the recent past, it has been found that
the best approach in conceptual phase has been a consecutive expansion and
narrowing down of ideas (Dylla, 1989; Fricke, 1992). It has been a major
problem however, in synthesis support systems as well as in manual methods



:".
;

EVOLUTION OF A FUNCTIONAL SYNTHESISER 621

suggested in design methodology (Pahl and Beitz, 1984) as to how to
explore designs without compromising their range.

As mentioned in Lee et al (1992), granularity of building blocks is
particularly important for managing complexity, and they felt complexity
could be tackled using a few important parameters at a time. However, this is
only part of the problem. Even if the problem is solved using few parameters
at a time, there would still be a large number of feasible alternatives to
compare, evaluate and modify. We feel that the major part of complexity
arises from the conflict about level of abstraction right for getting high
explorability as well as wide range of solutions. Our approach tackles this in
three new ways. One is to clustering designs based on designers' heuristics
of similar designs; the second is to provide range by generating solutions at
a high level of abstraction, while allowing visualisation at a low level for each
of these solutions, and the third is by bringing designer in the navigation
process which is essential for design support systems.

In conclusion, this new version of FuncSION provides a database of
hierarchical functional components and their interfaces for the user to select.
The system generates synthesis solutions using an algorithm at a level of
abstraction selected by the designer. The solutions generated by the system
can be clustered using the heuristics chosen by the designer, allowing the
designer to switch between multiple solutions and to concentrate on the
interesting ones. Visualisation and simulation techniques are provided for
the designer to explore and browse the hierarchical structure of functional
components and the tree of synthesis solutions.

Initial testing results have shown that the integration of a hierarchical
functional component database with systematic synthesis techniques, the
heuristics for clustering, visualisation and simulation contributed to stimulate
the designers' think. The newly developed version of FuncSION provided a
good basis for utilising AI techniques in functional modelling of mechanical
engineering design.

Work is being carried out to fully incorporate the control strategies and
clustering heuristics discussed in this paper, and to enhance the visualisation
facilities further with a fully animated graphical user interface. This new
version of FuncSION is being integrated with an embodiment generator and
a kinematic analysis system to form an integrated functional modelling
system.

Acknowledgements

The work presented in this paper is currently being funded by the EPSRc.
We would like to acknowledge the support from Dr Stuart Burgess, Dr
Thomas Bligh, Mark Nowack and Doug Isgrove who acted as the designers



:..
,

622 AMARESH CHAKRABARTI AND MING XI TANG

in the experiments reported in this paper. We would like also to acknowledge
the support from Dr Nigel Ball, Dr Lucienne Blessing and Dr Tim Murdoch
for their support in the development of the past and current version of
FuncSION.

References

Ball, N. R. and Bauert, F.: 1992, The integrated design framework: Supporting the design
process using a blackboard system, in J. S. Gero (ed.), Artificial Intelligence in Design
'92, Kluwer, Dordrecht, pp. 21-38.

Bauert, F.: 1993, The mobile arm support phase in design, manufacture, testing, software
tools, Technical Report CUED/C-EDC/TR 13, Cambridge University.

Chakrabarti, A. and Bligh, T. P.: 1994, A two-step approach to conceptual design of
mechanical device, in J. S. Gero and F. Sudweeks (eds), Artificial Intelligence in Design
'94, Kluwer, Dordrecht, pp. 21-38.

Ehrlenspiel, K. and Dylla, N. D.: 1989, Experimental Investigation of the design process, in:
V. Hubka (ed.), Proceeding of ICED89. International Conference on Engineering Design,
Mechanical Engineering Publication, Bury St Edmunds, Vol. 1, pp. 77-95.

Fricke, G.: 1992, Experimental investigation of individual processes in engineering design,
in N. Cross, K. Doorst and N. Roozenburg (eds), Research in Design Thinking, Delft
University Press, Delft, pp.1O5-1O9.

Johnson, A. L et al: 1993, Modelling functionality in CAD: Implications for product
representation, Proceedings of the 9th International Conference on Engineering Design.

Lee, C-L., Iyenger, G. and Kota, S.: 1992, Automated configuration design of hydraulic
systems, in J. S. Gero (ed.), Artificial Intelligence in Design '92, Kluwer, Dordrecht, pp.
61-82.

Pabl, G. and Beitz, W.: 1984, Engineering Design, Design Council, London.
Thornton, A.: 1993, Constraint Specification and Satisfaction in Embodiment Design, PhD

Thesis, University of Cambridge, Department of Engineering.


