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A method for Estimating the
Degree of Uncertainty With
Respect to Life Cycle Assessment
During Design
Life cycle assessment (LCA) is used to estimate a product’s environmental impact. Using
LCA during the earlier stages of design may produce erroneous results since information
available on the product’s lifecycle is typically incomplete at these stages. The resulting
uncertainty must be accounted for in the decision-making process. This paper proposes a
method for estimating the environmental impact of a product’s life cycle and the associ-
ated degree of uncertainty of that impact using information generated during the design
process. Total impact is estimated based on aggregation of individual product life cycle
processes impacts. Uncertainty estimation is based on assessing the mismatch between
the information required and the information available about the product life cycle in
each uncertainty category, as well as their integration. The method is evaluated using
pre-defined scenarios with varying uncertainty. �DOI: 10.1115/1.4002163�
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1 Introduction
The ratio of product mass to waste mass produced as a result of

the product during its life cycle is about one to twenty �1�. These
wastes are produced in each phase of the product life cycle from
raw material extraction to product retirement. Sustainable devel-
opment is defined in Ref. �2� as “development which meets to-
day’s needs without placing the ability of future generations to
meet their needs at risk.” For such development, design can play a
major role �3� where major requirements for the design including
those for sustainable development must be identified and satisfied
throughout the process �4� as decisions taken in design affect all
stages of product development �5� and in turn all phases of the
product’s life cycle.

Life cycle assessment �6� is currently the most promising and
scientifically defendable methodology for estimating environmen-
tal impacts of a product lifecycle �7�. Currently, detailed LCA �6�
is critically dependent on high volumes of product-specific data,
time consuming, often unaffordable, and reliably used only after
detailed design. Abridged LCA �8,9� is either incomplete or inac-
curate or requires prior knowledge of what data are important
�10�. There is substantial uncertainty involved in the environmen-
tal impact calculations in LCA �11�. Literature �11� stresses that
estimation of impact must be accompanied by estimation of its
uncertainty or imprecision without which the decisions based on
these results could be misleading.

If LCA is to be used throughout the design process, the degree
of uncertainty involved in the estimations must be assessed and
taken into account in the decision making processes during design
without which the decisions might be unduly biased or incorrect.
There is a need to understand the information required for using
LCA in design and the information available at each design stage
to ascertain the extent to which LCA could be used at each stage
of design.

The objectives of this paper are as follows.

• Understand uncertainty in the context of product lifecycle
information in various stages of design. This is done using
literature review and descriptive studies.

• Develop a method for estimating lifecycle environmental
impacts of a product and the degree of uncertainty associ-
ated with this estimation. This is done by developing a
method that integrates interval algebra �12� and weighted
objectives �13� and evaluating this by using example sce-
narios of varying uncertainty.

2 Literature Review and Descriptive Studies

2.1 Literature Review. From a survey �14� of LCA studies, it
is identified that LCA results are subject to various sources of
uncertainty: uncertainties introduced by the data and the method-
ology such as the lack of site-specific data and the aggregation of
data over different spatial and temporal scales. Studies �15,16�
done on finding problems with LCA argue that LCA should in-
clude an explanation of the uncertainties that arise during LCA.
Uncertainty assessment is necessary for better decision support,
transparency and quality comparison. However, usually this is not
carried out in LCA studies due to the additional effort needed and
the lack of methods �7�.

The methods, e.g., Refs. �17,18�, have been developed for esti-
mating impacts, taking into account uncertainties in lifecycle in-
ventory data �LCI� in a specific domain. Their authors argue that
fuzzy intervals and numbers are more informative and closer to
human judgments and perceptions than crisp numbers, thus, im-
proving the pertinence and the interpretation of the results. Some
databases have statistical distributions of data �19�, which can be
used in LCA for impact calculations �20�. It is emphasized �20�
that interpretation of uncertainty in data and results is an indis-
pensable part of sound decision making and should be an integral
part of the analysis itself. Tools like Simapro7 �21� and KCL-ECO
�22� have some limited lifecycle inventory with data distributions,
and a limited facility for uncertainty analysis based on the Monte
Carlo method �23�, which uses inventory values for which the
distribution is available �like range, triangular, normal, or lognor-
mal�; the calculation is performed for a specified number of times,
each time taking a random value within the distribution. The
variation in results can be displayed in different distributions or as
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average or best estimate. However, this analysis is limited to es-
timating uncertainty in LCI data if the distributions for the data
are available. It cannot deal with uncertainty arising from the
design process such as those associated with the product structure
or the lifecycle phases.

Normally, probability distributions �24� are used to represent
random variability in input parameters, upper and lower bounds or
fuzzy intervals are used to represent vagueness, and sensitivity
analysis is used for methodological choices �25�. Some �26� sug-
gest that for better decision making, all types of uncertainty must
be propagated into a single result, using combined models for
simulation and approximation.

Geographical, temporal or technological differences are typical
sources for uncertainty associated with inventory data in LCA; for
instance, geographical and technological differences in life cycle
inventory data are shown to be major sources of uncertainty in
LCA for processes in waste incinerators �27,28�. In Ref. �29�,
specific rules of thumb are suggested for the individual impact
categories of global warming, acidification, eutrophication, and
photo-oxidant creation; the rules quantify the difference in impact
scores necessary for it to be significant in product comparison.
The authors suggest that LCI data providers should supply quan-
titative uncertainty information, including correlation estimates
for individual parameters. Some �30� emphasize the need for a
framework for modeling data uncertainty in LCI. They �30� take
uncertainty as data inaccuracy and lack of specific data, divide the
latter into complete lack of data and lack of representative data,
and suggest as important the parameters that cause a larger spread
in the model outcome.

In Ref. �26�, a method is proposed for propagation of data un-
certainty into the overall results of the LCA; it combines approxi-
mation formulae such as Gauss, Bader–Baccini, and Monte Carlo
simulation to estimate the uncertainty. In Ref. �31�, it is illustrated
that in the initial stages of design, functional parameters, which
are functional requirements and constraints for the design prob-
lem, should be made available for estimating environmental im-
pacts of the design; use of statistical and sensitivity analysis are
suggested for representing uncertainty.

According to literature �11,32�, uncertainty exists in LCA be-
cause of data inaccuracy, data gaps, model uncertainties, choices,
spatial and temporal variability, variability between sources, etc.
In Ref. �11�, it is argued that LCA results are usually presented as
point estimates, which strongly overestimate the reliability; it is
suggested that uncertainty arise due to lack of knowledge about
the true value of a quantity. Also, stressed is the need for estimat-
ing and expressing the uncertainty. Even though there are various
available methods for performing uncertainty estimations, such as
classical statistical analysis, Bayesian statistical analysis �which
needs expert judgments to ascertain the nature of distributions�,
interval algebra, vague error interval calculations, and probabilis-
tic simulation �which involves the difficult task of finding all pos-
sible events�, there is still need for a framework that explicate the
important aspects of data quality and uncertainty in LCA to the
practitioner �11�.

2.2 Descriptive Studies. We have conducted a series of de-
sign exercises and analyzed their proceedings in order to under-
stand the evolving levels of uncertainty in product lifecycle infor-
mation during design. The goal was to identify the types of
uncertainty that emerge when LCA is used in design; since this
information was not available in existing literature, we carried out
our own descriptive studies to identify these. The following is a
summary of the descriptive studies, for details see Ref. �33�.
Twenty-four design exercises were conducted involving 8 design-
ers and 3 design problems; each problem was solved by each
designer using one of the three interventions—use of general de-
sign literature, use of environmentally friendly design �EFD� lit-
erature, or use of detailed impact assessment software. The de-
signers followed the ”think-aloud” protocol while designing; the
whole process was videotaped and transcribed, which along with

documentations were used for protocol analysis. Out of the 24
exercises, the 16 exercises that used EFD literature and detailed
impact assessment software as intervention have been analyzed,
and the summary of results are presented below.

• During design of product lifecycles in each of these exer-
cises, it was observed that the structure of the product �as-
semblies, subassemblies, parts, interfaces, and features�
evolved as design progressed.

• Various designers considered different lifecycle phases at
different stages of their design process, each at different
levels of completeness.

• Designers did not necessarily consider all lifecycle pro-
cesses for each life cycle phase; in some cases these became
more comprehensive as design progressed.

• In some of the design exercises, designers looked for spe-
cific data on environmental impacts, which were not avail-
able in the databases accessed.

2.3 Summary. As seen in Sec. 2.1, most of the literature in
this area has been focused on identifying uncertainty associated
with LCI data �13–19,22,23� with some focus on methodology
�20,24�. However, the analysis of descriptive studies �Sec. 2.2�
illustrate that information about the lifecycle of a product contin-
ues to evolve during its development: there is evolving uncer-
tainty also in the product structure, in the completeness of the
lifecycle phases, and in the lifecycle processes considered.

Traditionally, LCA is used after the detail design when detailed
information about the product, its lifecycle phases, and associated
data are available. In this case, the uncertainty will be confined to
data and methodology, depending on the variations in these. How-
ever, if LCA is used during earlier stages of design where infor-
mation about the product and its lifecycle phases are also uncer-
tain, there is a greater degree of uncertainty. Hence, in these
phases it is important to consider reducible uncertainties like those
associated with product structure and lifecycle phase along with
data and methodological uncertainty. For decision-making, the re-
sults should encompass both impact and associated uncertainty.
While literature discusses uncertainty of impact data, there is no
discussion on how to calculate and represent the overall uncer-
tainty in the estimated potential impact of a product lifecycle pro-
posal at any given stage in design with respect to LCA.

Therefore, a method for assessing environmental impacts for
product life cycles should not only provide an estimate of the
impact but also the associated degree of uncertainty that takes into
account all these various sources of uncertainty.

The following section details the uncertainty categories identi-
fied in our work from literature and descriptive studies.

3 Uncertainty Categories
While existing literature discusses uncertainty in data and meth-

odology; analyses of descriptive studies identified further uncer-
tainty in product structure and life cycle phases. Impact estimation
requires two things: the data and the methodology to process the
data. The data pertain to processes related to the various elements
of the product in its various lifecycle phases. Therefore, the over-
all uncertainty is affected by the uncertainty related to the product,
its life cycle phases, and those related to the data pertaining to the
processes and the methodology used to integrate this data. There-
fore, in the context of LCA, these four are the only possible ele-
ments of uncertainty. We take uncertainty as the accuracy of the
estimation rather than the probability of finding the correct esti-
mate. The four uncertainty categories are further elaborated be-
low.

3.1 Product Structure. Uncertainty about the structure of a
product is related to its subsystems, parts and interfaces. LCA
requires information about the materials and processes used in the
life cycle of the product. A product’s structure fundamentally con-
tains only parts and interfaces, each having various features.
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These parts and interfaces are hierarchically organized into groups
called assemblies and subassemblies, where subassemblies con-
tain only parts and interfaces while assemblies also contain sub-
assemblies or other assemblies. The organization is important for
capturing information about the various lifecycle processes, e.g.,
an assembly process that requires movement of the subassembly
as a whole and not as its individual parts and features. The cat-
egories �Fig. 1� provide a complete set for describing a product’s
structure and are important for identification of the life cycle pro-
cesses associated with the product. For instance, while material
choice depends only on individual parts, manufacturing processes
are dependent on part features, and assembly processes depend on
the interfaces between features belonging to different parts, which
may belong to different subassemblies or assemblies. Also, these
categories are standard categories used in describing CAD mod-
els, such as in CATIA �34�, and are important to be so, since a
designer would typically use a CAD model for developing and
describing a product’s structure, which is required for defining the
product’s life cycle processes. Uncertainty in product structure
definition is subdivided into the following �qualitative degrees of
each uncertainty are proposed within brackets�.

• Uncertainty in definition of assemblies, i.e., the collection of
assemblies, subassemblies, parts, and interfaces between
them in that particular assembly of the product �all, some,
none�.

• Uncertainty in definition of subassemblies, i.e., the collec-
tion of parts and interfaces in the subassemblies of the prod-
uct �all, some, none�.

• Uncertainty in definition of interfaces, i.e., the connection
between one or more features of one part and one or more
features of another part in the product �all, some, none�.

• Uncertainty in definition of parts, i.e., the smallest physical
element in the product, not in size but in that it cannot be
divided further into parts and interfaces �all, some, none�.

• Uncertainty in definition of features, i.e., the geometrical
forms in a part �all, some, none�.

3.2 Lifecycle Phases. This uncertainty is related to the mate-
rial, production, distribution, usage, and after-use phases of the

product life cycle. There are also subphases within each of these:
extraction, manufacturing, and transportation in the material phase
�all, some, none�; manufacturing and assembly in the production
phase �all, some, none�; packaging and transportation in the dis-
tribution phase �all, some, none�; use, maintenance, and repair in
the usage phase �all, some, none�; and reuse, recycle, and disposal
in the after-use phase �all, some, none�. For example, at a particu-
lar stage of design, a designer may have information only about
the material of a component, and not about its other phases. The
uncertainty in the lifecycle-phases category is accounts for
whether or not a designer considers individual phases �i.e., mate-
rial, production, distribution, usage, or after-usage�. Table 1 shows
some instances of designer utterances, from an exercise from the
descriptive studies, that involves the lifecycle phases of the prod-
uct. Note that many of these deliberations involve classes �nonc-
risp� of lifecycle processes—such as plastics rather than a specific
plastic, transportation rather than transportation by a specific
means, etc. These would affect the specificity of values and asso-
ciated uncertainty.

3.3 Data Quality. This uncertainty is related to the relevance
of data in terms of its temporal relevance, spatial relevance, and
sample size, see details below. The uncertainty in the data quality
category can be in terms of the data being old �temporal�, nonlocal
�spatial� and the number of sources on which the data are based
�sample size�. Uncertainty in data quality is subdivided into the
following.

• Uncertainty in temporal relevance of the data �current, old,
very old�: how close in time the data collected is to when the
process it describes is to be used.

• Uncertainty in spatial relevance of the data �national, conti-
nental, world�: geographically how close the area from
which the data collected is to where the process it describes
is to be used.

• Uncertainty in sample size on which the data is based �mul-
tiple samples, single sample�: in terms of the number of
samples used for creating the data.

3.4 Methodological Choices. This uncertainty comes from
the temporal relevance, spatial relevance and the comprehensive-
ness of the methodology. The uncertainty in methodological
choices can be in terms of being old, being from a different region
than where applied, and in terms of only some of the potential
impacts being considered. Uncertainty in methodological choices
is subdivided into the following.

• Uncertainty in temporal relevance of the choices: how re-
cent �current, old, very old�.

• Uncertainty in spatial relevance of the choices: how close
geographically �national, continental, world�.

Fig. 1 A product and its subsystems

Table 1 Lifecycle processes and protocol instances from a design exercise

Lifecycle process Protocol instance

Material

Balloons in terms of rubber, plastic, flexible material
probably cloth I can use those �designer trying to

evaluate and select material�

Production

Will be injection molded; Mainly stitching and aluminum
frame bolted �designer trying to select the production

(manufacturing and assembly) processes required for the
solution�

Distribution

It should be easy to pack, no damage in transportation
�designer is generating the requirements for product’s

distribution phase�

Usage
It should not have any maintenance �designer generating

requirement for usage phase�

After-usage

Easy to disassemble; should be recyclable �designer
generating the requirement of after-usage phase for the

solution�
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• Uncertainty in comprehensiveness of the choices: how com-
prehensive the categories of impact considered by the meth-
odology are �all, some, none�.

3.5 Uncertainty Propagation. Figure 2 shows the uncertain-
ties in different categories and their propagation to the overall
uncertainty.

There can be uncertainty in the product structure—i.e., the defi-
nition of the product is uncertain. For instance, take a product that
has two parts, Part1, Part2, and one interface Int1 between these
parts such as a cutting edge connected to a handle for a vegetable
cutting knife. If information about the interface is not available,
e.g., how the handle is connected to the cutting edge is yet to be
defined, there would be uncertainty in the product structure defi-
nition. Even if the product structure definition is complete, there
can still be uncertainty in terms of the definition of the product
lifecycle. For instance, the after-usage details of Part1 and Part2
may not be specified yet, giving uncertainty in the lifecycle defi-
nition. Even if the definition of the lifecycle is complete, there can
still be uncertainty in terms of data quality; for instance the data
about Part1 and Part2 in the material and distribution phases may
be uncertain, resulting in data quality uncertainty. Even if the data
quality is certain, there may still be uncertainty in methodological
choices. For example, the method used for impact assessment may
have been developed for a different region, is old or does not
consider all the impact categories.

At any design stage, uncertainty in information available is a
combination of these individual uncertainties. We need to identify
what information is required in all these categories so as to accu-
rately estimate the environmental impact of the product lifecycle
at that stage and what information is available in all these catego-
ries at that stage; based on these, the uncertainty in impact esti-
mation is assessed.

4 Method Development
A method is developed using interval algebra and weighted

objectives, which takes uncertainties about the product structure
definition, lifecycle definition and data quality into account while
assuming that the uncertainty related to methodological choices
remains unchanged. This is because estimation of impact is al-
ways based on a particular methodology, and the uncertainty re-
lated to methodology will be the same for all proposals compared
using that methodology.

During design, information about life cycle processes range
from no selection �i.e., complete lack of data� to class selection
�i.e., noncrisp data� to point selection �i.e., complete data�. If we
use probability theory �35�, we need to have probability densities
from previous data which is not available in LCI databases. Even
if this data were available, this could be used only for crisp values,
and not for noncrisp data such as classes as prevalent in the situ-
ations considered in this work. Dempster–Shafer theory �36� can

be used for sets �i.e., classes� but will require computation of
belief and mass functions for each such class based on previous
data, which is not available in LCI databases.

As a result, noncrisp data such as those corresponding to
classes are represented in our method as intervals, which provide
the range within which the value for the class should lie. Aggre-
gation of such data from the life cycle processes, each with dif-
ferent impacts representing their relative importance, as required
for LCA during earlier stages of design, require a method that
integrates these data taking into account the relative importance.
Development of a method that blends interval algebra and
weighted objectives is a reasonable choice, therefore, for impact
and uncertainty estimation in these situations. The proposed
method offers an estimate of the environmental impact of a prod-
uct lifecycle proposal as it evolves during various design stages
while also providing an estimate of the uncertainty associated
with the estimated impact in terms of a confidence �discussed
below� on the impact estimated.

The proposed method has two major parts: impact estimation
and uncertainty estimation. Impact estimation makes straight-
forward use of interval algebra—an established mathematical tool
to deal with noncrisp values. Uncertainty estimation is harder. The
challenge is to aggregate uncertainties associated with a list of
processes, which fall into the following three categories of pro-
cesses:

• having given impacts and uncertainty, both as intervals
• those that show no impacts as they have not been chosen by

the designer but are known to exist
• those that have no impacts because they are not harmful to

the environment

For aggregation, weighted objectives method is a commonly
used Ref. �13� when criteria have different weights. In our case,
the challenges of using weighted objectives are as follows.

• Impacts can be crisp or noncrisp values, and weights are
proportional to the size of impact.

• Some processes cannot have weights since their impact val-
ues are zero by choice or by virtue of them being environ-
mentally benign.

Our method uses a weighted sum on interval values by integrat-
ing weighted objectives method with interval algebra. Since both
these are standard mathematical tools for decision making and are
integrated in a manner ensuring that each applies to its designed
domain of application, the method has a clear mathematical foun-
dation. The processes that have zero values are counted in a non-
weighted manner since weighting does not apply in these cases.

The method can be used to estimate, as an interval of values,
the environmental impact of each chosen class or instance of a
lifecycle process, for a given product as a collection of individual
assemblies, subassemblies, parts, and interfaces. The method can
then be used to aggregate these process-specific impacts into an
overall impact measure for the product for its whole life cycle.
Finally the method can be used to estimate the confidence on the
impact of each individual process, and aggregate these to estimate
the confidence on the overall impact of the product lifecycle.

The measure developed enables the impact value for a given
class of lifecycle processes with given environmental impacts to
be taken as an interval between two impact values—the maximum
and the minimum possible in that class. The confidence level of an
estimate is described using a number between 0 and 1, where 0
specifies no confidence on the estimation while 1 specifies 100%
confidence. If for an entity �i.e., a part or an interface� neither a
class nor a specific value is chosen for a given lifecycle phase
�e.g., material phase�, its impact is taken to be 0 with confidence
equivalent to zero. If, on the other hand, any choice is made,
confidence on the value of chosen is taken to be 1, which needs to

Fig. 2 Uncertainty propagation
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be multiplied by the temporal factor, spatial factor, and sample
size factor �from Table 2� to account for the associated data un-
certainty.

Estimation of impact and confidence of a life cycle process is
performed as follows, for the four choices possible �the first two
referred henceforth as “zero-impact values,” while the remaining
two as “nonzero-impact values”�.

1. No lifecycle processes are selected

Impact valuei = 0 �1�

Confidencei = 0 �2�
2. A lifecycle process is selected with impact being zero

Impact valuei = 0 �3�

Confidencei = 1 �4�
3. A lifecycle process class is chosen

Impacti = �VminVmax�i � �
j=1

n

LCPPj � �
k=1

m

PSEPk �5�

Confidencei = ��tf � sf � ssf�min�tf � sf � ssf�max�i �6�

Here, n is the number of LCPP, m is the number of PSEP,
�VminVmax� is the impact values in range for a specific unit of
lifecycle process range, tf is temporal factor, sf is spatial, sf
is sample size factor, LCPP �life cycle process parameters):
depend on the lifecycle process �for example for transporta-
tion, distance in km�, PSEP: These are product structure
element parameters and depend on the elements of the prod-
uct structure �e.g., part mass in kg�. So for transporting a
product of x kg over y km, x and y need to be multiplied.
The final value is x�y kgkm, which is multiplied by the unit
impact value �specified in number of impact units per kgkm�
to estimate the impact of transportation of this product.

4. A specific lifecycle process is chosen

Impact valuei = Vi � �
j=1

n

LCPPj � �
k=1

m

PSEPk �7�

Confidencei = tf i � sf i � ssf i �8�

Here, Vi is the impact value for a specific unit of lifecycle
process. Note that the specific values of these factors can
sometimes be derived from the analysis of life cycle inven-
tory data, such as those in Simapro databases �21�. The da-
tabase contains sets of data for each process; each data dif-
fers in terms of the time, space and the number of samples
from which it was created.

Depending on which data are picked for impact estimation and
which data best represent the time or space of the life cycle of a
product, an error will occur in the estimation that will vary from 0
to some absolute maximum value, depending on the choice of
data. The absolute mean percent error %em for a given data set
representing a given process should be calculated as the average,
across all data-points in the set �extended from mean deviation in
statistics �37��, of the percent difference between the value of each

data point and the mean value of the data set; �1-%em� is used as
the spatial or temporal factor depending on the nature of the data
set.

%em =
1

n�
i=1

n � �vk − vm�
vm

	
i

�9�

Here, n is the number of data points, Vk is the value of kth data
point, and Vm is the mean value of the data set

For temporal relevance, the data sets available in the databases
consulted �17� are either within a 5 years span, or within a 10
years span. Figure 3 shows the absolute mean percent error �%em

t �
for different processes, for 5 years and 10 years span. The average
%em

t across all processes analyzed for a 5 year span is 6.13; for 10
year span it is 12.07; this implies that if older data is used, the
error increases. In these cases, the average temporal factors are
0.94 and 0.88, respectively.

For spatial relevance, typical data sets available in the databases
are either within a continent, or across continents. Figure 4 shows
the absolute mean percent error �%em

s � in impact values for vari-
ous processes, plotted for data from the same continent and from
different continents. The average %em

s across different processes
within a continent is 2; across continents it is 18 �nine times�;
%em

s is thus smaller within a continent than across continents. In
these cases, the average spatial factors are 0.98 and 0.82, respec-
tively.

Table 2 Temporal, spatial relevance, and sample size

Years Factor Location Factor Sample size Factor

�5 1 Country 1 Multiple 1
�5& �10 0.94 Continent 0.98 Single 0.9

�10 0.88 Other continent 0.82

Fig. 3 Temporal relevance

Fig. 4 Spatial relevance
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Generally, data accuracy would be more if multiple samples are
used to create the data. For estimating the sample size factors, we
need the original samples from which each data-point in the da-
tabases, typically the average of the sample values, have been
created. The percent error %es due to sample size variation is
calculated using Eq. �10� �37�. However, current databases do not
provide these individual samples. As placeholders, we currently
take 1 for multiple data and 0.9 for single data; in reality the
database provider can be asked to provide the original samples so
that the sample size error can be accurately estimated using Eq.
�10�.

%es = � t � s

n

	 �10�

Here, n is the number of samples, which is 1, s is the standard
deviation, and t is the factor based on n should be taken from
t-table.

Based on the above discussion, indicative average temporal fac-
tor, spatial factor and sample size factors are provided in Table 2.
For instance, for data less than 5 years old, the temporal factor
could be taken as 1, i.e., 100% accurate; for data older than 5
years and less than 10 years, the factor could be taken as 0.94, and
so on. For the Spatial values, if the data is from the same country,
the factor could be taken as 1; if it is not from the same country
but from the same continent, the factor could be taken as 0.98, and
so on. According to the sample size values in the Table 2, if the
data are from multiple samples, the factor is taken as 1, if it is
from a single source, the factor is taken as 0.9. With greater data
availability, these values could be made more specific to the pro-
cess, space, time and sample size used. In the example case dis-
cussed in scenario 1 �Sec. 6�, let the minimum value of a process
class in the material phase be temporally within 5 years and spa-
tially across continent from the usage scenario, and based on mul-
tiple samples; the maximum value for this process class be tem-
porally over 5 years, spatially within continent, and is also based
on multiple samples; then the confidence interval of the process
class, estimated using Eq. �6�, is �1�0.82�1.94�0.98�1�
��0.8 0.9�.

4.1 Lifecyclewise Impact and Confidence Estimation. The
impact of a product in the material phase is an aggregation of the
individual material impacts of its assemblies, subassemblies and
parts. Equation �11� is used to estimate the impact of a product in
the material phase.

• The impact of an assembly in the material phase is an ag-

gregation of the individual material impacts of the assem-
blies, subassemblies and parts in that assembly.

• The impact of a subassembly in the material phase is an
aggregation of the material impacts of the parts in that sub-
assembly; interfaces have no material impact.

• The impact of a part in the material phase is an aggregation
of the impacts of the individual material processes in that
part.

Equation �12� is used to estimate the confidence on the impact
of a product at the material phase. The aggregated confidence on
the impact value is dependent on the impact values �as weights�
and the associated confidences for nonzero impact values, and
only on the confidences for zero impact values �since zero-impact
values have no impact�. This is to take into account the fact that
our confidence of a sum of values is affected proportionately by
the values as well as confidence on them: a given confidence on a
larger value influences more the confidence on the sum than does
the same confidence on a smaller value.

Similar logic is used for finding the impacts and associated
confidences for other subsystems and other lifecycle phases.

The assumptions behind Eqs. �11� and �12� are the following.

• Impact in a given life cycle phase can be estimated by ag-
gregating the impacts of all processes in that phase.

• For a life cycle process, the impact will be zero �if it is
environmentally benign� or nonzero �if not�. In each case,
there will be some confidence on this impact.

• The confidence on the aggregate value �for a given phase�
will be shared proportionately by the aggregate confidence
on the zero-impact value processes and the nonzero-impact
value processes.

• The aggregate confidence of the nonzero-impact value pro-
cesses is proportional to the number of these processes as
well as the value and confidence of the processes.

• The aggregate confidence of the zero-impact value pro-
cesses is proportional to the number of these processes as
well as the confidence on each such process �since the im-
pact value is zero in these cases�.

• For normalization purposes, the equation should reflect that
the scale of aggregate confidence on the impact value within
a phase should be between 0 and 1.

PIiM = �
j=1

No. of A

AIijM + �
l=1

No. of SA

SAIilM + �
n=1

No. of Pa

PaIinM

�11�

PCiM =
NZi

NZi + Zi� �
j=1

NZiA

AIijM � ACijM + �
l=1

NZiSA

SAIilM � SACilM + �
n=1

NZiPa

PaIinM � PaCinM

�
j=1

NZiA

AIijM + �
l=1

NZiSA

SAIilM + �
n=1

NZiPa

PaIinM 
+

Zi

NZi + Zi� �
a=1

ZiA

ACiaM + �
b=1

ZiSA

SACibM + �
c=1

ZiPa

PaCicM

�
a=1

ZiA

ACiamax
M + �

b=1

ZiSA

SACibmax
M + �

c=1

ZiPa

PaCicmax
M

NZi = NZiA + NZiSA + NZiPaZi = ZiA + ZiSA + ZiPa �12�
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Here, PI M is the product environmental impact in material
phase, AI M is the assembly environmental impact in mate-
rial phase, SAI M is the subassembly environmental impact
in material phase, PaI M is the part environmental impact in
material phase, M is the material, A is the assemblies, SA is
the subassemblies, i is the identifier for product, j is the
identifier for assembly, l is the identifier for subassembly, n
is the identifier for part, PC M is the product confidence in
material phase, AC M is the assembly confidence in material
phase, SAC M is the subassembly confidence in material
phase, PaC M is the part confidence in material phase, NZi
is the total number of nonzero valued items in material
phase in product i, NZA is the number of nonzero valued
assemblies, NZSA is the number of nonzero valued subas-
semblies, NZPa is the number of nonzero valued parts, Zi is
the total number of zero valued items in material phase in
product i, ACmax M is the maximum possible Assembly con-
fidence in material phase, SACmax M is the maximum pos-
sible subassembly confidence in material phase, PaCmax M
is the maximum possible part confidence in material phase,
ZA is the number of zero valued assemblies, ZSA is the num-
ber of zero valued subassemblies, and ZPa is the number of
zero valued parts.

4.2 Overall Impact and Overall Confidence. The method
for estimating the overall impact value and the overall confidence
on this impact for a product lifecycle is based on Eqs. �13� and
�14�, with similar assumptions as in Eqs. �11� and �12� but now
applied to zero-impact-value and nonzero-impact-value life cycle
phases �rather than processes�.

The estimates on impact and associated confidence of product
structure elements, life cycle phases, etc. will be aggregated to-
gether to form the impact of the overall product. There are two
possible levels of addition: addition of impacts of all the child
elements �e.g., extraction, production, and distribution� in a parent
element for a given life cycle phase �e.g., material�, and addition
of impacts from all life cycle phases. The addition of impacts is
carried out using interval algebra while estimation of confidence
is made using a weighted sum of the individual confidence of
impacts, where the impact values are used as the weights.

The overall environmental impact of the product lifecycle pro-
posal is estimated by adding all nonzero individual lifecycle im-
pacts, using Eq. �13�. The overall confidence is estimated by tak-
ing both nonzero-impact lifecycle phases and zero-impact
lifecycle phases, using Eq. �14�.

PIi total = �
l=1

No. of LCP

in ith product

PIilLCP �13�

PCi total =
NZL

NZL + ZL��
j=1

NZL

Vij � Cij

�
j=1

NZL

Vij
 +

ZL

NZL + ZL� �
k=1

ZL

Cik

�
k=1

ZL

Cikmax

�14�

Here PI total is the overall product environmental impact �in all
lifecycle phases�, PI LCP is the product environmental impact
�lifecycle wise�, PC total is the overall product confidence �in all
lifecycle phases�, NZL is the number of nonzero valued lifecycle
phases in ith product, ZL is the number of zero valued lifecycle
phases in ith product, Vij is the environmental impact values of jth
lifecycle phase of ith product, Cij is the confidence of jth lifecycle
phase of ith product, Cik is the confidence of kth lifecycle phase of
ith product, and Cij max is the maximum confidence of kth life-
cycle phase of ith product. For a range of values of Vi, we get
confidence in range

5 Calculation Example
The proposed method for assessing environmental impact and

associated confidence is evaluated using a set of example sce-
narios with varying levels of uncertainty. The hypothesis is that,
those scenarios that have more elements in the various categories
of uncertainty that are not considered, known, known precisely, or
known with what relevance, are likely to have less environmental
impact estimates with less confidence values. As the number of
such elements is reduced, the impact values should increase with
an associated increase in their confidence.

Let us take the example from Sec. 4.1 in which a product pro-
posal has two individual parts Part1 and Part2 with one interface
Int1; the impact values �in intervals� and confidence on these val-
ues �also in intervals� for the parts and the interface, in various life
cycle phases, are specified in Table 3. Here, I is used to denote
impact value and C to denote confidence. Five lifecycle phases are
considered: material, production, distribution, usage and after-
usage.

Four scenarios are taken to check the consistency of calculation
using the above equations.

• Scenario1 �S1�: Uncertainty exists in all three categories
�product-structure, lifecycle, and data quality�. Data on Int1
is not available �reflected in no values in impact or uncer-
tainty for Int1 in the table�, which accounts for uncertainty
in product structure, the after-usage details of the parts are
not specified, which gives uncertainty in lifecycle, and the

Table 3 Impact and confidence of life cycle processes of product elements in different scenarios

Material phase Production phase Distribution phase Usage phase After-usage phase

Im Cm Ip Cp Id Cd Iu Cu Ia Ca

S1 Part1 �2,4� �0.8 0.9� �2,3� �0.9 1� �1,2� �0.3 0.4� 0 1 – 0
Int1 – 0
Part2 �1,2� �0.5 0.6� 2 1 �1,3� �0.4 0.4� 0 1 – 0

S2 Part1 �2,4� 1 �2,3� 1 �1,2� 1 0 1 – 0
Int1 – 0
Part2 �1,2� 1 2 1 �1,3� 1 0 1 – 0

S3 Part1 �2,4� 1 �2,3� 1 �1,2� 1 0 1 �2,3� 1
Int1 – 0
Part2 �1,2� 1 2 1 �1,3� 1 0 1 1 1

S4 Part1 4 1 3 1 2 1 0 1 3 1
Int1 2 1
Part2 2 1 2 1 3 1 0 1 1 1
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initial confidence values of the parts in material and distri-
bution phases are uncertain, resulting in data quality uncer-
tainty.

• Scenario2 �S2�: Uncertainty exists in two categories �prod-
uct structure and lifecycle�. Here also, the product structure
and lifecycle uncertainty are the same as in S1 but data
quality uncertainty is removed by selecting relevant data, as
seen in the new confidence value of 1.

• Scenario3 �S3�: Uncertainty exists in only one category
�product structure�. Here, the product structure uncertainty
remains as before while the lifecycle uncertainty is removed
by specifying the necessary values for Part1 and Part2 in the
after-usage phase.

• Scenario4 �S4�: There is no uncertainty: all the required data
is available. Here, necessary values for Int1 are provided, so
that the product structure uncertainty is removed and thus
the overall confidence should be 1.

The four scenarios in the example are designed such that the
amount of information about the product lifecycle proposal is in-
creased steadily from scenario 1 to scenario 4. If the proposed
method for assessing impact and associated uncertainty is reason-
able, it should predict a steady increase in the impact value and a
steady reduction in uncertainty reflected in a steady increase in
confidence. For it to be acceptable, the method embodied in the
equations should be able to provide estimates on the confidence in
the calculated impact value as would be intuitively expected in the
scenarios, which are varied depending on the lack of detailed
information about the product lifecycle proposal. Table 4 shows
the summary of impact values and the estimates of confidence on
them, as estimated using the proposed method. As can be seen
from this table, as the uncertainty is reduced across the scenarios,
the impact values and confidences on them are increased as ex-
pected. In S1, the overall impact ranges from 9 to 16; the confi-
dence on this impact ranges from 0.33 to 0.8. The difference be-
tween S1 and S2 is only in data uncertainty; so the overall impact
value remains the same �9 16� but the lower value of the confi-
dence range increases �0.46 0.8�.

From S2 to S3, further information about the after-usage phase
is added, resulting in an increase in both impact value �12 20� and
confidence �0.6 1�. In S4, information about product structure el-
ement is also added, resulting in an increase in both impact value
�22� and confidence �1�. Note that during design, multiple life
cycle alternatives may have to be compared, taking into account
both impact and associated confidence. For example, if an alter-
native has a greater impact with greater confidence than another,
choice using traditional methods will favor the latter for its lower
impact. This might be an error in judgment since the impact esti-
mated for the latter is less complete, as shown in its lower confi-
dence, and hence likely to increase more as more information
becomes available; the decision might have to be deferred. For
these situations, new decision methods are necessary. One such
method is discussed in Ref. �38�.

6 Summary and Conclusions
Various categories of uncertainty associated with using LCA for

a product lifecycle proposal in various stages of design are iden-
tified. Based on this, a method for estimating lifecycle environ-

mental impact and associated confidence of a product is devel-
oped. This method is evaluated using example scenarios with
varying uncertainty.

As the method is capable of taking into account all three cat-
egories of uncertainty, it is likely to be better suited to support
decision-making throughout the design process where information
continues to develop and uncertainties progressively get reduced.
The scope for this paper is using LCA in design for estimating
impacts and associated uncertainties. Within this, methodological
uncertainty is currently not addressed. Also, for a different meth-
odology such as MET matrix, the nature of uncertainties might be
different. These need further investigation.
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