
:..
~

Artificial Intelligence j"r Engineering Design. Analysis and Manufacturing (2000), 14,403-414. Printed in the USA.
Copyright CO2000 Cambridge University Press 0890-0604/00 $12.50

Increasing efficiency of compositional synthesis by
improving the database of its building blocks

AMARESH CHAKRABARTI

1.
Engineering Design Centre, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.

(RECEIVED October 5, 1998; ACCEPTEDApril 5, 2000)

Abstract

This article is an attempt to improve the efficiency of procedures for compositional synthesis of design solutions using
building blocks. These procedures have found use in a wide range of applications, and are one of the most substantial

outcomes of research into automated synthesis of design solutions. Due to their combinatorial nature, these procedures
are highly inefficient in solving problems, especially when the database of building blocks for synthesis or the problem
size is large. Previous literature often focuses on improving only the algorithm part of a procedure, while it is both its
algorithm and database which together determine the overall efficiency of the procedure. This article uses a case study

to investigate and develop a set of rules for structuring and preprocessing a database of building blocks so as to improve
the efficiency of synthesis of design solutions using this database.

Keywords: Automated Compositional Synthesis; Concept Generation; Database Preprocessing; Efficient
Bidirectional Search; Engineering Design

1. INTRODUCTION

I
I~

Compositional synthesis, where a set of building blocks is
composed into networks as solutions for design problems,
has been attempted for various domains of application (Pahl
& Beitz, 1984; Prabhu & Taylor, 1988; Hoover & Rinderle,
1989; Ulrich & Seering, 1989; Finger & Rinderle, 1990;
Hoeltzel & Chieng, 1990; Kota & Chiou, 1992; Malmqvist,
1993; Chakrabarti & Bligh, 1994, 1996a, 1996b; Welch &
Dixon, 1994; Sushkov et aI., 1996). Each of these systems
requires a database of building blocks. Building blocks are
simpler, constituting elements of the solutions found in the

domain of application. For instance, Ulrich and Seering
(1989) use generic physical systems elements, represented
using bond graphs (Paynter, 1961), Hoover and Rinderle
(1989) use gear-pairs, Chakrabarti and Bligh (1994) use mo-
tion elements, and Kota and Chiou (1992) use kinematic
pairs, represented as matrices, as building blocks. The al-
gorithms are essentially combinatorial in nature, often with
a "generate and test" flavor.

In some earlier papers, an algorithm was proposed for
exhaustive compositional synthesis of design solution prin-

Reprint requests to: Amaresh Chakrabarti, Engineering Design Centre,
Department of Engineering, University of Cambridge, Trumpington Street,
Cambridge CB2 IPZ, U.K. E-mail: ac123@eng.cam.ac.uk

ciples in mechanical (Chakrabarti & Bligh, 1996c) and me-
chatronic (Chakrabarti et aI., 1997) domains. A comparison
between the solutions generated by the program and those
considered independently by the designers (Burgess et aI.,
1995) in a case study showed that the computer suggested a
wider range of interesting principles than designers consid-
ered on their own. This demonstrated the potential of the
procedure in supporting designers' creative potential by ex-
posing them to new solutions.

The two parameters of a synthesis procedure that research-
ers should be most concerned with are its effectiveness and
efficiency. Effectiveness is defined here as the capability of
generating new and interesting concepts, and has been dealt
with elsewhere (Chakrabarti, 1998). One problem with com-
positional synthesis is its combinatorial nature, which makes
it inefficient in enumerating a comprehensive range of so-
lutions. The importance of having a large database of wide-
ranging building blocks has long been recognized as useful
for generating new and interesting concepts, and work is in
progress in several groups towards developing such data-
bases (Roth, 1970; Selutsky, 1987; Ishii et aI., 1994;
Tsourikov, 1995; Taura et aI., 1996; Sushkov et aI., 1996;
Chakrabarti et aI., 1997; Khang, 1998). However, effi-
ciency of a synthesis procedure, which is defined here as
the inverse of computational effort (i.e., time and memory)
required for the procedure to generate a given solution set,

An.

404

becomes particularly important if it must do so using these
large databases.

A synthesis procedure has two parts: a database of build-
ing blocks and an algorithm that uses this database for syn-
thesis. Previous efforts to improving efficiency have focused
primarily on improving the algorithm. We wish to improve
the efficiency of both the algorithm and the database to ef-
fect an overall improvement in the procedure. In a previous
article (Chakrabarti, 1999), an attempt to improve the algo-
rithm was reported. Substantial improvement in efficiency
was achieved by using bidirectional instead of unidirec-
tional search. However, the database used by such algo-
rithms can still be poorly disposed towards solving a design
problem, and thus there may be room for improving further
the performance of a procedure by improving the quality of
its database, an area hardly researched before.

U sing a case study, this article investigates the role of the
database of building blocks in the effectiveness and effi-
ciency of a compositional computational synthesis proce-
dure, and uses the results of this investigation to develop an
approach for structuring and preprocessing a database so as
to improve the efficiency of synthesis using this database.

2. DESIGN PROBLEMS CONSIDERED

The design problems considered here are those that can be

expressed using a function transforming a given input into
a required output. For instance, a sensing problem can be
expressed in terms of the input signal to be sensed (e.g.,
acceleration in the case of an accelerometer problem), and
an output medium (Chakrabarti et aI., 1997) in which this
signal is to be sensed (e.g., an electrical voltage). In the med-
ical device domain, a drug infusion problem could be ex-
pressed in terms of an input signal leading to an output effect
of a drug flow of some amount. In a mechanical device do-

main, an example would be a door locking problem whereby
a given input motion of a door handle leads to a retraction
motion of the latch. Although not all design problems can
be expressed using inputs and outputs, as noted by Umeda
and Tomiyama (1997), this representation is useful in a large
variety of problems in many domains of application. The
common form for these functions is shown in Figure 1.

3. DESIGN SOLUTIONS CONSIDERED

A design solution (also referred to as a solution principle)
within the scope of this research is one that can be ex-

input. output-design
problem

Fig. 1. The general form of design problems under consideration.

A. Chakrabarti

pressed as a composition of building blocks so that they are
connected via their inputs and outputs to transform the given
input of the design problem into its required output. Each
building block therefore has an input and an output, and the
building blocks constituting a solution principle transform
the given input into a number of intermediate input/output
variables before producing the required output. An acceler-
ometer solution principle, for instance, can be a composi-
tion of three building blocks, an inertia block to transform
the input acceleration into an inertia force, a spring build-
ing block to transform this force into a change in position,
and a capacitance block to alter the voltage across a capac-
itor as a result of a change in capacitance due to the position
change. A building block, in the context of the door locking
problem, could be a caIn block transforming the rotation of
the handle into a translational motion and a tie-rod block

transferring this motion to a different output position. A large
number of design solutions in existence, as well as a sub-
stantial number of computer programs for design synthesis,
are compositional in nature (e.g., Hoover & Rinderle, 1989;
Ulrich & Seering, 1989; Kota & Chiou, 1992). Therefore,
solutions of this kind (see Fig. 2) are fairly generic in their
use in research and applications.

.f

0"

4. DATABASE OF BUILDING BLOCKS

A database is described here as a set of links between a set

of nodes. Nodes are input/output parameters, for example,
acceleration and voltage in the sample database shown in
Figure 3. Directed links between the nodes (shown by ar-
rows in Fig. 3) represent the building blocks (i.e., physical
devices and effects capable of transforming the parameter
from which the link starts, called input, into that in which it
ends, termed its output). Each building block therefore has
an input and an output node.

5. SYNTHESIS ALGORITHMS

The synthesis approaches have been described in detail in
Chakrabarti (1996a). Here is a brief summary. The ap-
proach is to concatenate a set of building blocks from a data-
base to form chains of building blocks, described here as
solution principles, that transform the input parameter (sig-
nal to be sensed in the case of sensing problems) into the
required output parameter (medium in which it is to be
sensed). In this definition, an acceleration sensing problem
would be described using acceleration as an input, and cur-
rent or voltage as the output. A solution principle uses one
or a series of building blocks to transform the input into the
required output. If a database is described, as above, as a
network of directed links between a set of nodes, and two

of its nodes are described as the input and output required
of a given design problem (in the case investigated these
are acceleration and voltage, respectively), then each solu-
tion generated would be one possible distinct route between
the input and output node. The way in which these routes

Increasing efficiency of compositional synthesis

~ t-"'1HBI B2

B 1...B4: building blocks

"

405

H ~IPUI
B3 B4

Fig. 2. The general form of the design solutions considered.

"j

are identified constitutes the synthesis algorithms. Unidi-
rectional search does this by progressively moving from the
input towards the output node, whereas bidirectional search
does this by progressing from both input and output nodes
towards each other.

6. A CASE STUDY

In this case study, a database of building blocks was created
by populating it with common building blocks identified by
analyzing various existing sensing devices. We call this ran-

dom population of the database, as the population process
is not directed towards solving any specific synthesis prob-
lem. The synthesis approaches, mentioned in Section 5, were
applied to this database to generate solution principles to an
acceleration-sensing problem. These principles were then
analyzed to see whether they were worth generating, and
what caused their generation, so as to help encourage or avoid
their generation. The solutions generated were evaluated for
their worth by designers involved in the project.

6.1. Analysis of solutions

The analysis of the solutions identified five distinct fea-
tures: I) some solutions differed from others in terms of how
they solved the major part of the required function; 2) some
differed only in terms of how they solved the minor part of
the function; 3) some were identical except for the granu-
larity with which they were described, or 4) in terms of the
detailed differences as to how their transformations were

~ rei-permeability--- .
oap Inductance

1"' pe~ capacitance

J
/ /area--- .
/' F rotatIOn

7/~ ~,',,'~ 7 =,~"'/ , --- voltage

T" ,h.~ 1
stress mag-field

force~ acceleration magnetisation.,...Jlll'"

Fig. 3. A sample database !'laving 18 nodes and 35 links (building blocks).

implemented, and 5) some of the building blocks in the data-
base were not useful in solving the given problem.

6.1.1. Major alld minor parts of the function

The major part of the function of an accelerometer is how
to get some known electrical output as a measure of accel-
eration, and the minor part is how to transform this electri-
cal output into a representative voltage. In this case study,
although many principles generated by the computer solved
the major part of the function using a wide variety of ef-
fects, many others were hardly different in the way they
solved this major part, although they solved the minor part
using a variety of ways.

A designer's objective would naturally be to maximize
the variety of principles for the major function, and to avoid
wasting time on finding creative alternatives for a minor
part of the function. However, what is a major part for a
particular design case may well be the minor part in an-
other. Therefore, it is hard to specify what is major in a ge-
neric database. The strategy adopted is for the designer to
decide the major part of the function on a case-by-case ba-
sis, and solve this part with the help of synthesis. The route
envisaged is to allow designers the opportunity of dealing
with more than one alternative output variable transform-
ing to any of which will suffice as a solution to the problem.

6.1.2. Principles which were different in terms
of the effects they used

In this category, the principles were different in terms of
the underlying physical effects they used. For instance, con-
trast a piezo-type principle (see the top chain in Fig. 4) with
a strain-gauge-type principle (bottom chain in Fig. 4). The
piezo type uses inertia to transform the input acceleration

c:::J building blocks --- inputs/outputs

Fig. 4. The same transformation achieved by different building-block
chains.

406

into a force, aforce-stress building block to transform the
force into a stress, and a stress-strain block to transform

this stress into a strain, just as the strain-gauge type does. In
the piezo case, this strain is then converted into an electri-

cal charge using a piezo effect, followed by a change of the
charge into a voltage. Contrast this with the strain-gauge
type, where the strain, by definition, causes a length defor-
mation leading to a change in resistance, which changes volt-
age using Ohm's law. The two principles, therefore, use a
separate chain of physical effects to do the same transfor-

mation: of strain to voltage. We must retain the capability
of generating principles of this kind. The wider the range of
variables addressed by the building blocks in a database,
and the more connected they are (via building blocks that
can transform one variable to another), the more will be the

variety of alternative principles generated by using such a
database. We tried to attain this by ensuring a large number
of variables shared by the building blocks in the database
and by a large number of relationships between them (see
Chakrabarti, 1998 for further details).

6.1.3. Principles that are different only in terms
of thei r granularity

Consider the effect of generating a position change as a
response to a force change. We could do this using a spring
(top part, Fig. 5), which describes this as aforce-to-position
transformation, or we could do this using a combination of
a force-to-stress, stress-to-strain, and a strain-to-position
transformation (bottom part, Fig. 5), which is fundamen-
tally how a spring works. If we keep all four of these build-
ing blocks in the database, we run into the danger of
duplication. Keeping only the force-position block does
not allow its constitutive building blocks to be used in other
principles.

This is a good example of how efficiency and effective-
ness are related. Avoiding duplication saves time, as the
duplicates need not be generated, but how it is avoided de-
termines whether such efficiency comes at the expense of
effectiveness. It is decided that only building blocks that
are more basic will be kept in the database so as to avoid

compromise in effectiveness, for example, the building
blocks force-to-stress, stress-to-strain, and a strain-to-

position transformation rather than the monolithic spring in
the above case.

force-1 spring ~position

force
position

~ building blocks -- inputs/outputs

Fig. 5. The same transfurmation achieved by building blocks of different
granularity.

'1

A. Chakrabarti

6.1.4. Principles that use alternative single building
blocks to do the same transformation

Take the example of transforming a rotation into a cur-
rent. This can be done using two alternative building blocks:
either by Wiedemann effect, or by an eddy-current-based

configuration. Such distinctions are useful at a later stage,
where a designer may wish to explore in more detail prin-
ciples that realize this transformation. The database there-
fore should be maintained such that only one building block
between any two variables is used, even if the block may
have alternative incarnations in reality. This is done to avoid
duplication of solution principles, at this stage, in terms of
their possible detailed realizations.

6.1.5. Building blocks that were not useful
in solving a given problem

By comparing the building blocks shared among the so-
lutions generated with those in the database, it was found
that several in the database were not used in any solutions.
As a database is described here as a network of relation-

ships among a set of variables, and a given problem is de-
scribed in terms of two of its nodes (one as input and the
other as output, e.g., acceleration and voltage, respective-
Iy), the solutions expected to be generated using the data-
base are given by the routes that are possible between these
two nodes of this network. Therefore, there can be nodes

and links in the network that are not part of these routes,
and therefore, not useful in solving this particular problem.
For instance, generation of solutions to fulfill a function of
transforming I (input) to 0 (output) will not require any of
the links in the database shown in Figure 6 other than those
shown using bold arrows. This implies that randomly pop-
ulating a database will not necessarily make it more effec-
tive for solving all problems. One way of improving the
efficiency of a synthesis process using a database, for solv-
ing a particular synthesis problem, would be to trim the data-
base first by eliminating those building blocks from the
database which cannot contribute to solving this problem,
and then use this trimmed database in the synthesis process.
For a given problem this trimming needs to be done only
once, and then this trimmed database can be used as long as
one wishes to synthesize solutions using various numbers
of building blocks per solution, for this particular problem.
However, if one wishes to use the original database for syn-

./""B~C

~A~~

T~D~OE-

- building blocks
A, B, C. database nodes

Fig. 6. An example database of building blocks.

Increasing efficiency of compositional synthesis

the sizing solutions to a new problem, the original database
needs to be trimmed for the new problem, after which this
new, trimmed database can be used in as many synthesis
experiments as required, by simply specifying the required
solution size (i.e., number of building blocks per solution).

In this research, five such elimination rules have been de-

veloped, and the resulting simplified database is tested for
its effectiveness by using it in generating solutions to a num-
ber of pilot problems, where the solutions generated are com-
pared with those generated for the same problems using the
original database. If the solutions generated using the sim-
plified database contains all distinct solutions generated using
the original database, and uses less time and memory, then
this should demonstrate the potential of these simplifica-
tions in improving efficiency of synthesis without sacrific-
ing effectiveness.

6.2. Preprocessing rules

This section introduces and illustrates, using examples, the
five rules that have been developed for preprocessing a data-
base for a given problem.

Rule I: Eliminate links directed towards the input node
(as the task is to find ways of going from the input to the
output, and this link will not help in that; see Fig. 7).

Rule 2: Eliminate links directed away from the output node
(as the task is to find ways of going from the input to the
output, and this link will not help in that; see Fig. 8).

Rule 3: Eliminate the links to each node (except the given
input or required output) for which all links are either di-
rected towards the node or away from it. In these nodes, it
is possible either to reach the node or leave the node, but
not both, and therefore impossible to go from one node to
another (e.g., the input and output) via this node using these
links (Fig. 9).

Rule 4: Eliminate each node (and their links) that is nei-
ther the given input nor the required output node, which has
a single link towards it and a single link away from it, both

~L H

?-K: /"-. tJ

M" '---O-D",. --"I .. J F

M?~ ~-/t'lJ.. J 0 """"""F~
I

.. buildingblocks
A, B, C.. database nodes

Fig. 7. Application of Rule I leads to elimination of link M --> I.

'..
1

407

/fL H

M?K~ --/t"-lJ.. J ~ 0 """"""F---
I

?~~
M '-J---"O

H

D(~"-. tJ
F~O

.- building blocks
A, B, Coo. database nodcs

Fig. 8. Application of Rule 2 leads to elimination of link 0 --> D.

of which are connected to the same node (as in these cases

their use will lead to repetition of the same node, causing
redundancy; see Fig. 10).

Rule 5: Eliminate all the nodes (and their links) that are
neither directly nor indirectly connected to the input or out-
put nodes, where an indirect connection between two nodes
is defined as a connection between them via a set of links
and nodes.

This rule is hard to implement without prohibitive com-
putational expense, and if it could be implemented, this alone
would be sufficient to prune the database, leaving only
useful building blocks for synthesis. However, an approxi-
mation of this has been implemented that is relatively inex-
pensive and works always except for cycles containing both
input and output nodes (see Appendix A). The approxima-
tion works like this. Suppose we wish to find those links
to/from node A (in the case in Fig. II there are only four
links: links I and 2 have A as their output, and links 3 and 4
have A as their input) that are not useful in the synthesis.
These would be those through which it is not possible to go
from the given input to the required output. Now, suppose

L

~~
M '-J

H

0 D(t "-. tJ
F~O

~(
M~ , --'0.. J

~
t '-- tJF ---0

.. buildingblocks
A, B, C.. database nodes

Fig. 9. Application of Rule 3 leads to elimination of links D --> E and
D-->F.

408

~t
M

~ ~ ~O~J

H

~" tJ
F ---G

~t
M

~ ~ --0~J

J:J
E

~~
F~G

.. buildingblocks
A,B,C. databasenodes

Fig. 10. Application of Rule 4 leads to elimination of links G --7 Hand
H --7 G.

we find all the nodes (we call them back-sets) that can be
reached by going backwards from A via each distinct link
from A; similarly, we find all the nodes that can be reached
by going forward (forward-sets) from A via each distinct
link from A. If any of these back-sets do not contain the
given input node, then the link that connects this back-set to

A will not be useful in synthesis, and can be safely elimi-
nated. Similarly, none of the links connecting A to the
forward-sets which do not contain the required output will
be useful in synthesis, and can be safely eliminated. The
process investigates the links associated with each node, and

thereby eliminates isolated clusters of links and cycles that
will not contribute to the synthesis. Repeated application of
this rule, along with rules 1-4 should eliminate all the links

that are not useful in solving a given problem (Fig. 12).

6.3. Preprocessing algorithm

The algorithm contains three steps.

STEP 1: By representing each building block in the data-
base as a directed link between the input and output of the
building block, and the input and output of the building block
as two nodes, build a network of nodes and links to repre-
sent the database.

A

Fig. 11. Implementing an approximate version of Rule s.

:".

A. Chakrabarti

/1L
?K~J OM

E

~~
F---G

~L
?KI

M !

u- connections from node J considered

-J O

E

~~F---G

/1L
?K/M !

u- connections from node F considered

E~
G

-J O

M/' !

u- connectIOnsfrom node K considered

E~
G

-J O

M// T

u- connectIons from node G considered

-J O
u- connections from node L considered

-J O I

--- building blocks
A, B, C. database nodes

Fig. 12. Application of Rule 5 leads to elimination of all links but I --7 J
and J --7 O.

STEP 2: Label the required input and output nodes as input
and output nodes.

STEP 3: Apply the five preprocessing rules, so as to sim-
plify the network by eliminating some of its nodes and links.
Each time the network is changed by the application of some
rules, apply all the rules once again, until no further sim-
plification of the network is possible.

7. ANALYSIS OF PERFORMANCE

7.1. Effect of preprocessing on computational
performance of the synthesis procedure

The method for evaluation is to test the following, which
together encapsulate the improvement expected of prepro-
cessing the databases.

I. Resource for uni-dir. algorithm + preproc. DB < re-
source for uni-dir. algorithm + un-preproc. DB.

2. Resource for bi-dir. algorithm + un-preproc. DB <
resource for uni-dir. algorithm + un-preproc. DB.

Increasing efficiency of' compositional synthesis

6000000

5000000
0 uni-dir. search; no

preprocessing
0

"C

.~ 4000000
'"
cr
~

. uni-dir. search;
preprocessing

3000000
l1 bi-dir. search; no

preprocessing
~
0
E

E 2000000
. bi-dir. search;

preprocessing

1000000

0

0

depth of tree

Fig. 13. Memory performance of procedure with and without database pre-

processing.

3. Resource for bi-dir. algorithm + preproc. DB < re-
source for bi-dir. algorithm + un-preproc. DB.

4. Resource for bi-dir. algorithm + preproc. DB < re-
source for uni-dir. algorithm + preproc. DB.

7.2. Results

Figures 13 and 14 show the effect of database preprocess-

ing, respectively, on memory and time required for gener-
ating the same set of solutions. In all figures in this section,

memory is given in bytes and CPU time in seconds (the ac-

tual user time is between 4 and 20 times more due to gar-

0

0 uni-dir. search; no

preprocessing

. uni-dir. search;
preprocessing

g 2.5

-:0
:; 2
Co

~ 1.5u

l1 bi-dir. search; no

preprocessing

. bi-dir. search;
preprocessing

depth of tree

Fig. 14. Computational performance with and without database
preprocessing.

;".

409

bage collection and other ancillary activities). The problem
solved was acceleration sensing (as a transformation from
acceleration to voltage). From Figure 13, it can be seenthat
a tenfold reduction in memory required is achieved (com-
pare the top two plots) by preprocessing the databasebe-
fore using unidirectional search for synthesis, when the
number of building blocks per solution synthesized is nine
(given by depth o.f'treein the Fig. 13). Similarly, a twofold
reduction in memory is achieved for the same solution size
by preprocessing the database before using bidirectional
search for synthesis (compare the bottom two plots in
Fig. 13). Together, the introduction of bidirectional search
instead of unidirectional search and of preprocessed data-
base instead of randomly populated database achieved a 33-
fold reduction in memory required. A similar trend has been
observed in reduction in computation time (Fig. 14).

However, the performance of the preprocessing algo-
rithm itself is combinatorial. As seen in Figures IS and 16,
preprocessing resource required increases faster than the in-
crease in the size of databases processed. Each plot in these
figures shows the preprocessing performance for a separate
problem (e.g., acceleration, pressure, or strain sensing). How-
ever for a given design problem, a designer needs to pre-
process the databaseonly once before carrying out a series
of synthesis experiments using the database.The larger this
series(each experiment constitutes generating solutions hav-
ing a given number of building blocks, which is a design-
er's choice), the less is the initial computational investment
per experiment, and this gets increasingly justified as the
allowable size of solutions (i.e., depth of tree in Figs. 13
and 14) increases. For instance, solving an acceleration sens-
ing problem, using 9 building blocks per solution using an
unpreprocessed database having 57 links requires 500,000
bytes of memory (Fig. 13), and preprocessing this database

500000
iii

450000

~ 400000
0
E 350000
Q)

E

. accelerationsensing

0 pressure sensing

300000
. strain sensing

0>

.~ 250000'"
Q)

~ 200000
Co

~ 150000
Co

100000

50000

0

0

no of links in the initial databases

Fig. 15. Memory required in preprocessing with increase in size of data-
base processed.

0

.0 i& & & & . . .
2 4 6 8 10

4.5

4

3.5

Q)
E 3

0
0.5 + 0 ft

0 I . a . I Ii , . .
0 2 4 6 8 10

iii

.

g

.
.c

.
I I I

20 40 60 80

410

1.4

1.2 .
co
E

. acceleration

sensing
0-

~ 0.8
(J)
(J)
co

~ 0.6
C-
co

Q. 0.4

0 pressure sensing .

... strain sensing

. 0
...

0

0.2
...

a

.
0
...

...

a 20 40 60 80

no of links in the initial databases

Fig. 16. Time required for preprocessing with increase in size of database
processed.

requires 300,000 bytes (Fig. 15). However, using the pre-
processed database for bidirectional search requires about
100,000 bytes, making the combination still more profit-
able than using unpreprocessed bidirectional search.

To determine how an increase in solution size justifies
the use of preprocessing, a parameter called cumulative re-
source ratio (CRR) is defined as:

CRR = CRAUD/(CRAPD + RAPD),

where CRAUD stands for cumulative resource for algo-
rithm using unpreprocessed database. It is the total re-
source required for synthesizing solutions to a given problem
of all sizes up to the maximum specified, using an unpre-
processed database. CRAPD stands for cumulative re-

source for algorithm using preprocessed database. It is the
total resource required for synthesizing solutions for the same
problem of all sizes up to the same maximum required size,
using the database after it is preprocessed for this problem.
RAPD stands for resource for algorithm for preprocessing

the database, and is the resource required for preprocessing
the database for this problem.

There can be two CRRs, one where the resource consid-

ered is memory required, and the other where it is the pro-
cessing time. The value of a CRR shows how the resource
required by an algorithm that uses an unpreprocessed data-
base compares with the combined resource required by the
same algorithm using a preprocessed database and by the
algorithm for preprocessing the database. When CRR is 1,
the overall resource required for preprocessing and using a
preprocessed database breaks even with that using an un-
preprocessed database. For any values of CRR larger than
1, preprocessing is more profitable for the size of solutions
processed. Figure 17 shows how the CRRs for memory and
time change as the maximum allowable size of solutions is

;.
1

A. Chakrabarti

7
0.~

~ 6
0 memory: uni-dir

search

~ 5"
0
(J) 4
~

. time: uni-dir
search

.
6 memory: bi-dir

search
0

co 3
>

:§ 2"
E
~ 1

... time: bi-dir
search

6

0 . 66'"
. 6

Ii ...a
a 5 10 15

Fig. 17. Effect of preprocessing resources on performance on algorithms.

depth of tree (d)

increased for unidirectional and bidirectional search. The

plots for unidirectional search have a faster rate of growth
than bidirectional search. This means that preprocessing is
more profitable with unidirectional search than with bidirec-
tional search: the CRR goes up to 7 for a maximum solution
size of 9 in unidirectional search whereas that for bidirec-

tional search increases up to about 3. The rest of this sec-
tion, therefore, investigates further how bidirectional search
is affected by the preprocessing overhead.

Figure 18 shows how CRRs for memory and time for pro-
cessing using bidirectional search change with the maxi-
mum size of solutions searched (i.e., maximum depth of tree
searched) for two problems using a database having 57 links
(i.e., building blocks) before preprocessing. Although there
is considerable difference between the exact numbers in the

two problem cases, the overall trend is similar: both CRRs
reach the break even point at a moderate depth of 8-10, and
grow up to 6 at a depth of 16, even for this small database.

(I)

... acceleration
sensing (time)

... ...

6 acceleration

sensing (memory)

. strain sensing
(time)

0 strain sensing

(memory)

~ ~

5

max depth of tree searched

Fig. 18. Change in CRRs with maximum solution size in bidirectional
search.

6

0 5

4
"
0
(J)

3
co
.::
iO 2
"
E"0

1

a

a

66
... ...
66 ...

Q . [J. [J
ii. [J
. 0 [J" 0

[J 0 0

I , I

10 15 20

Increasing efficiency of compositional synthesis

Figure 19 is a plot of the maximum size of solutions at
which the CRR for memory breaks even against the size of
the databases used for two problem cases using bidirec-
tional search. Figure 20 is the corresponding plot for time
as a resource. Though the exact value of the CRRs depends
on the problem solved, the overall trend is similar: the max-
imum size of solutions at which resources break even de-
creases as the size of the database searched is increased.

Table 1 shows some of the data on which the figures cited
above are based. The first column shows the intial size of

some databases before preprocessing. The second column
shows the percentage reduction they undergo as a result of
preprocessing. The third and fourth columns show the max-
imum depth necessary for breaking even using these data-
bases for time and memory, respectively, as the resource.
Comparison of the results in the first two rows, for which
the percentage reductions are high (47% and 46%, respec-
tively), shows that the break-even depth is smaller for the
larger database. The same is true for the databases in rows
two and three. It appears that, for high values of percentage
reduction, an increase in database size leads to a reduction

in depth at the break-even point, making preprocessing in-
creasingly cost effective. However, comparison of rows three
and four shows that even though the database size is larger
in row four, its percentage reduction is lower, almost halved,
and the depth at the break even point does decrease with
increase in database size. Similarly, if rows four and five
are compared, it can be seen that, although the database size
is larger in row five, its corresponding percentage reduction
is lower. In this case, the break-even depth is either the same
(for memory) or larger (for time) when the size of the data-
base is larger. These two cases appear to illustrate that if
percentage reduction is low, an increase in database size does
not lead to a reduction in the depth required for breaking
even. The general indication from empirical results is that,
as long as the percentage reduction in the size of the data-
base due to preprocessing is high, the larger the database
preprocessed, the more cost effective preprocessing would

~ 25
>'"

~ 20
~
.<>
,.. 15
0
E'"
E 10

0

0;
.r:. 5
C.'"" 0 ,

0 20 40 60 80

no of links in the database

Fig. 19. Maximum size of solutions searched at memory Breaking Even
versus database size.

;.

411

....

0

0

....0 IJ

acceleration

sensing

0 strain sensing

20 40 60 80

no of links in the database

Fig. 20. Maximum size of solutions searched at Time Breaking Even
versus database size.

be. However, a fuller analysis is not available at this stage
of research.

8. SUMMARY, CONCLUSIONS AND
FURTHER WORK

This article uses an engineering case study to identify the
kinds of concepts generated by a computational composi-
tional synthesis procedure, so as to develop ways of making
the database of building blocks used in the synthesis pro-
cess more effective and efficient. The case study reveals that,
as well as generating concepts that are genuinely different
from each other and therefore should be retained for con-

sideration in the conceptual design phase, the procedure also
generates concepts that are in many ways duplicated and
need to be avoided. It is also found that only part of the
database is useful in solving a given problem, and therefore
the remaining part of the database need not be considered
in the synthesis of concepts for this problem.

Efficiency and effectiveness are related. Avoiding the gen-
eration of uninteresting solutions leads to the saving of com-
putational time, which amounts to generation of solutions

Table 1. Database reduction in preprocessing and resulting
change in break-even depth

0 acceleration

sensing

.... strain sensing
I

....
0

0

12

I:'" 10>'"
""to 8'"
.0
'" 6

0; 4
.r:.
C.'"" 2

0

0

No. of Depth at Depth at
links in % reduction time memory
DB before due to breaking breaking
preprocessing preprocessing even even

28 46 12 12
44 47]1 II

57 38 9 9
68 22 9 9
90 15 10 9

412

of a higher quality using less resources than before. Con-
sidering only those building blocks that are useful in solv-
ing a gi ven problem should also improve the efficiency of
synthesis.

A number of rules for avoiding duplication of solutions
are developed and used in populating and structuring data-
bases of building blocks for use in computational-synthesis
procedures. Rules for avoiding consideration of building
blocks that are useless in solving a given problem are also
developed, and are sewn together into an algorithm [imple-
mented using Common-LISP on a LispWorks TM platform
(Harlequin, 1991)] for preprocessing a database before using
it to synthesize solutions for a given problem. Preprocess-
ing provides a substantial savings of time and memory
required for solving a given synthesis problem without sac-
rificing its effectiveness.

Being able to use large databases with a wide variety of
building blocks is critical in enhancing the potential of com-
positional synthesis for generating innovative solutions, and
many groups around the world are involved in developing
such databases. However, without efficient synthesis pro-
cedures capable of handling these large databases, much
of their potential for generating innovative solutions will
remain unrealized. Structuring these databases using the
rules mentioned in this paper and preprocessing them using
algorithms reported here before searching them with im-
proved search algorithms should enable effective and effi-
cient generation of solutions.

However, the preprocessing algorithm is computation-
ally expensive, although less so than synthesis using unpre-
processed databases, especially when the same preprocessed
database is used in a series of computational experiments.
It is found that, in general, as the size of the database to be
preprocessed increases, preprocessing becomes increas-
ingly profitable as long as it leads to a high percentage of
reduction in database size. Further work will be focused on

making the preprocessing algorithm more efficient and ex-
perimenting with larger databases to test the realistic effect
of these algorithms.

ACKNOWLEDGMENTS

This project has been funded by the Engineering and Physical
Sciences Research Council (EPSRC), U.K.

REFERENCES

Burgess. S., Moore, D., Edwards, K., Shibaike, N., Klaubert, H., & Chiang,
H-S. (1995). Design application: The design of a novel micro-
accelerometer. Workshop on Knowledge Sharing Environmentfor Cre-
ative Design of Higher Quality and Knowledge Intensiveness. 12-13.

Chakrabarti, A. (1998). A measure of the newness ofa solution set gener-
ated using a databaseoofbuilding blocks and the database parameters
which control its newness. Technical Report No. CUED-C-EDC/
TR64, Cambridge University, Cambridge, U.K.

Chakrabarti, A. (200 I). Improving efficiency of procedures for composi-
tional synthesis by using bi-directional search. AI EDAM (in press).

Chakrabarti, A., & Bligh, TP. (1994). Functional synthesis of solution-

:",

A. Chakrabarti

concepts in mechanical conceptual design. Part I: Knowledge repre-
sentation. Research in Engineering Design 6(3),127-141.

Chakrabarti, A., & Bligh, TP. (1996a). Functional synthesis of solution-
concepts in mechanical conceptual design. Part II: Kind synthesis. Re-
search in Engineering Design 8(I), 52-62.

Chakrabarti, A., & Bligh, TP. (1996b). Functional synthesis of solution-
concepts in mechanical conceptual design. Part III: Spatial configura-
tion. Research in Engineering Design 8(2),116-124.

Chakrabarti, A., & Bligh, TP. (1996c). An approach to functional synthe-
sis of design concepts: Theory, application, and emerging research is-
sues. AI in Engineering Design, Analysis and Manufacturing 10(4),
313-331.

Chakrabarti, A., Johnson, A.L., & Kiriyama, T (1997). An approach to
automated synthesis of solution principles for micro-sensor designs.
Proc. International Conference on Engineerin[.: Design ICED '97.
125-128.

Finger, S., & Rinderle, 1.R. (199IJ). A transf(Jrlnational approachfor me.
chanical design using a bond graph grammar. EDRC Report no. 24-
23-90. Carnegie-Mellon University, Pittsburgh, PA.

Harlequin. (1991). LispWorks: The Reference Manual, Harlequin PLC, U.K.
Hoeltzel, D.A., & Chieng, W-H. (1990). Knowledge-based approaches for

the creative synthesis of mechanisms. Computer-Aided Design 22(I),
57-67.

Hoover, S.P., & Rinderle, 1.R. (1989). A synthesis strategy for mechanical
devices. Research in Engineering Design 1(2), 87-IIJ3.

Ishii, M., Tomiyama, T, & Yoshikawa, H. (1994). A synthetic reasoning
method for conceptual design. In Towards World Class Manufactur-
ing, (Wozny, M., & Oiling, G., Eds.), (pp. 3-16). Elsevier Science,
North-Holland, Amsterdam.

Khang, 1.H.L. (1998). Embodiment modelling with parameter trees. Ph.D.
Thesis. University of Cambridge, Cambridge, U.K.

Kota, S., & Chiou, S.-1. (1992). Conceptual design of mechanisms based
on computational synthesis and simulation. Research in En[.:ineering
Design 4,75-87.

Malmqvist, 1. (1993). Computer-aided conceptual design of energy-
transforming technical systems. Proc. Int. Con! on Engineering De-
sign, ICED'93, 1541-1550.

Pahl, G., & Beitz, W. (1984). Engineering Design: A Systematic Ap-
proach. Springer-Verlag, New York.

Paynter, H.M. (1961). Analysis and Desi[.:n Of Engineerin[.: Systems. The
MIT Press, Cambridge, MA.

Prabhu, D.R., & Taylor, D.L. (1988). Some issues in the generation of the
topology of systems with constant power-flow input-output require-
ments. Proc. ASME Design Automation Conference, 41-48.

Roth, K. (l971J). Systematik der Machinen und ihrer Mechanischen Ele-
mentaren Funktionen. Feinwerktechnik 74, 453-460.

Selutsky,AB. (Ed) (1987). Daring Formulae of Creativity. Karelia, Petroza-
vodsk, Russia (in Russian).

Sushkov, y, Alberts, L., & Mars, N.J.!. (I 996). Innovative Design Based
on Sharable Physical Knowledge. In Artificial Intelligence in Design
'96, (Gero, 1.S., & Sudweeks F., Eds.), pp. 723-742. Kluwer Aca-
demic, Dordrecht, The Netherlands.

Taura, T, Koyama, T, & Kawaguchi, T (I996). Research on natural law
database. Joint Con! Knowledge Based Software En[.:ineerin[.: '96. So-
zopol, Bulgaria.

Tsourikov, YM. (I995). Inventive machine: 2nd generation. AI and Soci-
ety 7(1), 62-78.

Ulrich, K.T., & Seering, wP. (I989). Synthesis of schematic descriptions
in mechanical design. Research in En[.:ineerin[.: Desi[.:n I (I), 3-18.

Umeda, Y, & Tomiyama, T (I 997). Functional reasoning in design. IEEE
Expert: Intelligent Systems and Their Applications 12(2), 42-48.

Welch, R. Y, & Dixon, 1.R. (1994). Guiding conceptual design through be-
havioral reasoning. Research in Engineerin[.: Desi[.:n 0(3), 169-188.

APPENDIX A: A DATABASE BEFORE
AND AFTER PREPROCESSING

The following figures show all the links in one of the data-
bases preprocessed (the second data point from the left in
Figs, 15 and 16). This database has 44 links, and those shown
in bold arrows in Fig. A I are deleted by the preprocessing

Increasing efficiency of compositional synthesis

:'.

413

--- rel-penneability .
gap~ - ~ Inductance... ..

pennlttIVlt~ capacitance

rotatio
area ~

radiation

f
-- stress~ charge !

\
orce""... ' ~~ 'co .. I boo

\\ . ,Ie",,"" m"g"",~,jO" m" .field

\ /
t

~\ veloCIty

. area-rat
pre,,"re... ,-- fl",,"~ "m'

,
ratme

. rot-velocity~ flow-rate

"-

Fig. AI. The database before preprocessing has 44 links.

algorithm for an acceleration sensing problem defined as that
offinding routes from the acceleration node to the voltage node
in this database. Notice that light ~ resistance and light ~
voltage links are eliminated because the light node does not
have any input link to it, which means there is no way of get-
ting to this node from any other node. For a similar reason,
all links from flow-rate and from velocity node can be elim-
inated. Once these are eliminated, area-rate and rot-velocity
also become nodes without input links, and can be elimi-
nated, which, in turn, makes all links from flux-rate node el-

igible for elimination for the same reason. The voltage ~ strain
link is eliminated because voltage cannot be reached using this
link. Similarly, force ~ acceleration link is of no use be-

cause acceleration cannot be left using this link. As the only
route from acceleration is via force, and as the only route from
pressure is via force, the pressure ~ force and force ~ pres-
sure links would be of no use in solving the problem of going
from acceleration to force, and can be eliminated.

Then, as the only route from acceleration is first through
force and then through stress, the link connecting strain ~

rotation

rei-permeability--- .gap~ - Inductance

permittivity---::- capacitance

~area

current

Fig. A2. The same database after preprocessing has 35 links.

stress is of no use, as it forces visiting the same node more
than once. The links among temperature, heat, and radia-
tion form a cycle, using any of which would require visiting
the temperature node more than once during a move from
acceleration to voltage via temperature, and should be elim-
inated. This leaves temperature as a node with output links
only, and can also be eliminated. This completes the pro-
cess of preprocessing (Fig. A2).

APPENDIX B: WHY CYCLES CANNOT BE
DETECTED BY RULE 5

Figure B I shows a cycle of links in some database, that is,
a chain of links that has the same node as its output and
input. This specific cycle contains those nodes I and 0, which
are the required input and output of a given problem. In this
case, we need to check each link in this cycle to see if it is
useful for going from the input to the output. The way we
do this using Rule 5 is by going backward from each node
to see whether the required input node can be reached with-
out repeat visit to any node. The link connecting the node
under consideration that initiated the backward movement

should, in this case, be considered useful. Similarly, going
forward from the node considered to check whether the out-

put node can be reached without revisiting any node in this

c~ B"/
D

A" /'.. o

Fig. 81. A cycle of links containing the input and the output node.

414

process should allow us to check the usefulness of the for-
ward link of the node considered through which such for-
ward movement was initiated. Scrutinizing the cycle in
Figure B I reveals that no link in this figure, except I ~ 0,
is useful for transforming I to O. However, starting from
any of their nodes, I and 0 can be reached by going back-
wards and forwards, respectively, that is, by applying Rule 5.

Amaresh Chakrabarti received a B.E. in Mechanical En-

gineering from the University of Calcutta in 1985, an M.E.

:..
1

A. Chakrabarti

in Mechanical Design from Indian Institute of Science in
1987, and a Ph.D. in Engineering Design from Cambridge
University in 1991. He has since been associated with the
Engineering Design Centre at Cambridge University, as a
Senior Research Associate. In 1994, his software Func-

SIGN won a prize in the UK Morgans-Grampian Manufac-
turing Industry Achievements Awards competition. His main
interest is in design methodology, particularly in the earlier
phases of design. This includes requirements identification,
functional representation, conceptual design, and engineer-
ing design research methodology.

f t

II

