PD233: Design of Biomedical Devices and Systems

(Lecture-8 Medical Imaging Systems)
(Imaging Systems Basics, X-ray and CT)

Dr. Manish Arora
CPDM, IISc

Course Website:
http://cpdm.iisc.ac.in/utsaah/courses/
Medical Imaging Systems

- X-ray
- Computed Tomography (CT)
- Magnetic Resonance Imaging (MRI)
- Ultrasound (US)
- Photoacoustics (PA)
- Optical Coherence Tomography (OCT)

- Provide a window into the body to see **anatomy** and **signs of pathology**
- No window is perfect

Image credit http://www.sprawls.org/resources/
IMAGE QUALITY CHARACTERISTICS

THAT AFFECT VISIBILITY

Detail (blurring)
Contrast sensitivity
Spatial
Artifacts
Noise

Image credit: http://www.sprawls.org/resources/
RESOLUTION TEST PATTERN

1 2 3 4 5 6 7 8
SPATIAL FREQUENCY (LP/MM)
CONTRAST TRANSFER FUNCTION

High Blur

Medium Blur

High Blur

SPATIAL FREQUENCY (LP/MM)
Accuracy of Diagnostic System

Clinical questions:

- Is the bone fractured?
- Is a kidney stone present?
- Is there a blockage in the artery?

<table>
<thead>
<tr>
<th>Imaging Test Result</th>
<th>Disease Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>a (True Positive)</td>
</tr>
<tr>
<td>-</td>
<td>c (False Negative)</td>
</tr>
</tbody>
</table>

Sensitivity ➔ Probability of positive test given patient is sick

Specificity ➔ Probability of negative test given patient is well

What is Total accuracy?
Accuracy of Diagnostic System

Positive Predictive Value:

If the test is positive what is the probability that the disease is present.

Negative Predictive Value:

If the test is negative what is the probability that the disease is absent.

Prevalence: Number of diseases present in a given population at a given time

<table>
<thead>
<tr>
<th>Disease Present</th>
<th>Imaging Test Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- Positive Predictive Value: \(\frac{a}{a+b} \)
- Negative Predictive Value: \(\frac{d}{c+d} \)

\(a \): True Positives
\(b \): False Positives
\(c \): False Negatives
\(d \): True Negatives
X-Ray Imaging

"First medical X-ray by Wilhelm Röntgen of his wife Anna Bertha Ludwig's hand" by Wilhelm Röntgen.

Reading material: Chapter 1, Kirk Shung
Electromagnetic (EM) wave Spectrum

\[\frac{\partial^2 E}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} \quad \text{and} \quad \frac{\partial^2 B}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 B}{\partial t^2} \]

for the electric Field

for the magnetic Field

where \(\frac{1}{c^2} = \varepsilon_0 \mu_0 \)
X-Ray as Particle

Energy of a single photon

\[E = hf \]

\[h = \text{Planck's Constant} \]

\[= 4.13 \times 10^{-18} \text{ keV-sec} \]

What is eV?

Calculate energy of single 1nm X-ray Photon
Attenuation of X-Ray beam

Beam of intensity I and cross-sectional area A

$$dI = -\beta I dx$$

β = Linear attenuation coefficient

At what distance will the Intensity become half?
What will happen is material changes state/density?
Attenuation of X-Ray beam

Half Layer Value = \(\frac{0.693}{\beta} \)

<table>
<thead>
<tr>
<th>Material</th>
<th>HVL (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 keV</td>
</tr>
<tr>
<td>Tissue</td>
<td>20.0</td>
</tr>
<tr>
<td>Aluminum</td>
<td>2.3</td>
</tr>
<tr>
<td>Lead</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Mass-attenuation coefficient = \(\frac{\beta}{\rho} \)

\(\rho \) = density

\(\beta = n\sigma \)

Material has \(n \) atoms per unit volume each with cross section \(\sigma \)
Intensity of X-ray beam

Intensity \propto energy of the photons
\propto number of photons

X-Ray Dose – should also account for time of exposure

Roentgen (R): total number of ions produced in 1cc of air at (760mm Hg and 0°C)

Radiation Absorbed Dose (rad): X-Ray energy absorbed per kg of material

$1 \text{rad} = 0.01 \text{ Joules absorbed per kg}$
$1 \text{ gray (Gy)} = 100 \text{ rad}$
X-ray Generation

X -Rays can be generated by bombarding metal targets with high energy electron

White Radiation:
Energy lost by striking electron interact with the positivity charged metal
targets inelastically
Also know as Bremsstrahlung or stopping radiation

Characteristic Radiation:
When inner shell electrons are removed
by interaction striking electrons

This phenomenon similar to
photoelectric effect
X-ray Generators

X-rays can be generated by bombarding metal targets with high energy electrons.

Line Focus Principle
Large focal spot on the surface but small effective spot

\[F = f \sin(\theta) \]

Rotating Anode
3000 to 10000 rpm

X-ray Tube Characteristics
- Target material
- Tube voltage
- Tube current
- Filament current

Striking electrons heat up the metal target.
Beam Restrictors

Needed to regulate size and shape of the x-ray beam

Beam Restrictors:
- Aperture diaphragms
- Cone and cylinders
- Collimators

Collimators provide moveable opening
Light used a guide to see the region to be exposed by x-ray

Note Finite focal spot leads to penumbra along edges
Grids

Used to remove effect scattered emissions

Early image of x-ray with grid

Snap on grid, attaches to the x-ray film cassette
X-ray Detectors

X-Ray (Photographic) films

X-Ray produces free electrons, which reduces silver halide in the exposed region. Silver halide is black, hence region less exposed appear bright.

Digital Radiography (DR)

Uses reversible chemistry. Exposed film is scanned by variety of means - camera, drum scanner, laser scanning.

Alternatively, x ray detectors can be electronics/digitals.

Self study!

X Ray film characteristics: response curve, speed, fog, speed.
X-ray Detectors

Scintillation Detectors

X-Ray photon can produce visible photon in scintillation material (NaI, Th)
Visible photons and amplified by photomultiplier tube (PMT) - 85% efficient

Ionization Chamber Detectors

X Ray ionizes inert gases in confined chamber place between charged electrodes.
Amount of ions produced result in a current which digitized
Limitation of Conventional X-ray imaging

1) 2d Projection of 3D object – i.e. multiple planes are mapped on to one plane – depth information is lost
2) Limited use to distinguish soft tissue
3) Conventional X ray is not quantitative
 -Image intensity/size depend on source-object-detectors distance
Biological Effects of X-Ray

Factors affecting biological effects:

Threshold:
Quantitative level above which tissue damage happens

Exposure Time:
Exposure Area:

Biological Variation:
Response varies from species to species, tissue to tissue
Lethal dose vs short term effects
Biological Effects of X-Ray

LD 50/30:
Dose of substance or radiation which will kill 50% of the individual over a 30 day period.

Lethal dose for humans is ~450 rad
Short term effects like nausea, vomiting can happen at dose of 100 rad
- carcinogenic effects
- genetic effects

Even diagnostic X ray is harmful!!
Conventional Tomography
1st Gen. Computed Tomography

- Few minutes for each scan
- Pencil beams
- Motion artifacts
- Translate and Rotate Scanner

Images source: www.kau.edu.sa/Files/0008512/Files/19500_2nd_presentation_final.pdf
2nd Gen. Computed Tomography

- Multiple detector for single beam
- Initial versions with 3 detectors later upto 50+ detectors
- Still uses translate and rotate scanner
3st Gen. Computed Tomography

- 300-500 detectors
- Designed for pure rotational scanning
- X ray tube collimated for fan-beam
- Scanning time reduced to 2 sec per slice
- Got rid of translate and rotate scanning – even used in most recent configurations

Images source: www.kau.edu.sa/Files/0008512/Files/19500_2nd_presentation_final.pdf
4th Gen. Computed Tomography

- Circular array of fixed detectors
- Only source rotates
- 600-4800 detectors
- Less efficient as only ¼ of detectors used at any point in time.
1st generation CT scanner (Parallel beam, translate-rotate)

2nd generation CT scanner (Fan beam, translate-rotate)

3rd generation CT scanner (Fan beam, rotate only)

4th generation CT scanner (Fan beam, stationary circular detector)
5th Gen. Computed Tomography

Cine CT/ millisecond CR/ultrafast CT

- Stationary-Stationary configuration – no mechanical scanning
- X-ray source single tube with array of tungsten targets
- Reduced scanning time to 50ms, cardiac scanning made possible

Images source: www.kau.edu.sa/Files/0008512/Files/19500_2nd.presentation_final.pdf
6th Gen. Computed Tomography

Spiral/Helical CT

- Table translation with source rotation
- Slip ring technology X-ray source continuously
- Volume data interpolation algorithms developed
- Whole abdomen in 30sec (1BH)
6th Gen. Computed Tomography

Spiral/Helical CT

- Table translation with source rotation
- Slip ring technology: X-ray source continuously
- Volume data interpolation algorithms developed
- Whole abdomen in 30 sec (1BH)

Images source: www.kau.edu.sa/Files/0008512/Files/19500_2nd_presentation_final.pdf
7th Gen. Computed Tomography

MDCT/ Cone beam CT

Multi-row Detector CT
Collimator opened even more
Key advance in detector technology – 2D arrays rather than one 1D array

Images source: www.kau.edu.sa/Files/0008512/Files/19500_2nd_presentation_final.pdf
7th Gen. Computed Tomography

MDCT/ Cone beam CT
War on slices!!

1-slice CT 4-slice CT 16-slice CT 64-slice CT

focal spot

collimator

axis of rotation

1 x 5 mm 4 x 1 mm 16 x 0.75 mm 64 x 0.5 mm

detector

Images source: www.kau.edu.sa/Files/0008512/Files/19500_2nd_presentation_final.pdf
5th, 6th, 7th Gen. Computed Tomography

Images source: www.kau.edu.sa/Files/0008512/Files/19500_2nd_presentation_final.pdf
<table>
<thead>
<tr>
<th>Gen.</th>
<th>Source</th>
<th>Source Collimation</th>
<th>Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Single X-ray Tube</td>
<td>Pencil Beam</td>
<td>Single</td>
</tr>
<tr>
<td>2nd</td>
<td>Single X-ray Tube</td>
<td>Fan Beam (not enough to cover FOV)</td>
<td>Multiple</td>
</tr>
<tr>
<td>3rd</td>
<td>Single X-ray Tube</td>
<td>Fan Beam (enough to cover FOV)</td>
<td>Many</td>
</tr>
<tr>
<td>4th</td>
<td>Single X-ray Tube</td>
<td>Fan Beam covers FOV</td>
<td>Stationary Ring of Detectors</td>
</tr>
<tr>
<td>5th</td>
<td>Many tungsten anodes in single large tube</td>
<td>Fan Beam</td>
<td>Stationary Ring of Detectors</td>
</tr>
<tr>
<td>6th</td>
<td>3G/4G</td>
<td>3G/4G</td>
<td>3G/4G</td>
</tr>
<tr>
<td>7th</td>
<td>Single X-ray Tube</td>
<td>Cone Beam</td>
<td>Multiple array of detectors</td>
</tr>
</tbody>
</table>